Determinación del radio de la Tierra y de los radios y distancias en el sistema Tierra-Luna-Sol


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Determinación del radio de la Tierra y de los radios y distancias en el sistema Tierra-Luna-Sol"

Transcripción

1 Determinación del radio de la Tierra y de los radios y distancias en el sistema Tierra-Luna-Sol Rosa M. Ros Universitat Politécnica de Catalunya Aristarco ( a.c,) dedujo algunas proporciones entre las distancias y los radios del sistema Tierra-Luna-Sol. Calculó el radio del Sol y de la Luna, la distancia desde la Tierra al Sol y la distancia de la Tierra a la Luna en relación al radio de la Tierra. Algunos años después Eratóstenes ( a.c.) determinó el radio de nuestro planeta y fue posible calcular todas las distancias y radios del sistema Tierra-Luna-Sol. La propuesta de esta actividad consiste en repetir con estudiantes ambos experimentos. La idea es repetir el proceso matemático diseñado por Eratóstenes y Aristarco a la vez que, en la medida de lo posible, repetir las observaciones. El experimento de Eratóstenes, de nuevo Para repetir el experimento de Eratostenes basta usar dos estacas introducidas perpendicularmente en el suelo, en dos ciudades de la superficie terrestre sobre el mismo meridiano. Como las estacas deben estar apuntando hacia el centro de la Tierra, normalmente es mejor usar una plomada donde se marca un punto del hilo para poder medir las longitudes. Se debe medir la longitud de la plomada desde el suelo hasta esa marca, y la longitud de su sombra desde la base de la plomada hasta la sombra de la marca. Fig. 1: Situación de plomadas y ángulos en el experimento de Eratóstenes Como el Sol esta muy alejado de la Tierra, se considera que los rayos solares son paralelos. Esos rayos solares producen dos sombras, una para cada plomada. Se miden las longitudes de la plomada y su sombra y usando la definición de tangente (o dibujado un triangulo semejante), se obtienen los ángulos α y β (Fig. 1). El ángulo central γ puede calcularse imponiendo que la suma de los ángulos de un triángulo es igual a π radianes. Entonces π = π α + β +γ y simplificando γ = α β

2 donde α y β se han obtenido a partir de medir la plomada y su sombra. Finalmente estableciendo una proporcionalidad entre el ángulo γ, la longitud de su arco d (determinado por la distancia sobre el meridiano entre las dos ciudades), y 2π radianes del círculo meridiano y su longitud 2πR E, es decir, simplificando se deduce que: d/γ = (2πR E )/(2π) R E = d/ γ donde γ se ha obtenido a partir de la observación y d es la distancia en km entre ambas ciudades. Se puede hallar d a partir de un buen mapa (por ejemplo los mapas del ejército nos permiten conocerla). También hay que mencionar que el objetivo de esta actividad no es la precisión de los resultados. Solo se desea que los estudiantes descubran que pensando y usando todas las posibilidades que puedan imaginar son capaces de obtener resultados sorprendentes. Tamaños y Distancias en el sistema Tierra-Luna-Sol El experimento de Aristarco de Nuevo Relación entre las distancias Tierra-Luna y Tierra-Sol Aristarco determinó que el ángulo bajo el que se observa desde la Tierra la distancia Sol-Luna cuando ésta está en el instante del cuarto era de 87º (Fig. 2). Fig. 2 Posición relativa de la Luna en el cuarto En la actualidad se sabe que el cometió un error, posiblemente debido a que le resultó muy dificultoso determinar el preciso instante del cuarto de fase. De hecho este ángulo

3 es de 89º 51, pero el proceso usado por Aristarco es perfectamente correcto. En la figura 15, si se usa la definición de seno, se puede deducir que, sin 9' = ES/EM donde ES es la distancia desde la Tierra al Sol, y EM es la distancia de la Tierra a la Luna. Entonces aproximadamente, (aunque Aristarco dedujo ES = 19 EM). ES = 400 EM Relación entre el radio de la Luna y del Sol La relación entre el diámetro de la Luna y del Sol debe ser similar a la fórmula previamente obtenida, porque desde la Tierra se observan ambos diámetros iguales a 0.5º. Por lo tanto ambos radios verifican R S = 400 R M Relación entre la distancia de la Tierra a la Luna y el radio lunar o entre la distancia de la Tierra al Sol y el radio solar Dado que el diámetro observado de la Luna es de 0.5º, con 720 veces este diámetro es posible recubrir la trayectoria circular de la Luna en torno a la Tierra. La longitud de este recorrido es 2π veces la distancia Tierra-Luna, es decir 2 R M 720 = 2 π EM, despejando, y por un razonamiento similar, EM = (720 R M )/π ES = (720 R S )/π Esta relación es entre las distancias a la Tierra, el radio lunar, el radio solar y el radio Terrestre Durante un eclipse de Luna, Aristarco observó que el tiempo necesario para que la Luna cruce el cono de sombra terrestre era el doble del tiempo necesario para que la superficie de la Luna fuera cubierta (Fig. 3). Por lo tanto dedujo que la sombra del diámetro de la Tierra era doble que el diámetro de la Luna, esto es, la relación de ambos diámetros o radios era de 2:1. Realmente se sabe que este valor es de 2.6:1.

4 Fig. 3: Cono de sombra y posiciones relativas del sistema Tierra-Luna-Sol. Entonces, (Fig. 3) se deduce la siguiente relación donde x es una variable auxiliar. x /(2.6 R M ) = (x+em) / R E = (x+em+es) / R S Introduciendo en esta expresión las relaciones ES = 400 EM y R S = 400 R M, se puede eliminar x y simplificando se obtiene, R M = (401/1440 R E ) que permite expresar todas las dimensiones mencionadas con anterioridad en función del radio de la Tierra, así R S = (2005 /18) R E ES = (80200 /π) R E EM = (401 /(2π)) R E Donde sólo hay que sustituir el radio de nuestro planeta para obtener todas las distancias y radios del sistema Tierra-Luna-Sol. Medidas con los estudiantes Es una buena idea repetir las medidas realizadas por Aristarco con los estudiantes. En particular, primero hay que calcular el ángulo entre el Sol y la Luna en el cuarto. Para realizar esta medida sólo es necesario disponer de un teodolito y saber el exacto instante del cuarto. Así se verificará si este ángulo mide 87º ó 89º 51 (es esta una medida realmente difícil de obtener). En segundo lugar, durante un eclipse de Luna, usando un cronómetro, es posible calcular la relación entre los tiempos siguientes: el primer y el último contacto de la Luna con el cono de sombra terrestre, es decir, medir el diámetro del cono de sombra

5 de la Tierra (Fig. 4) y el tiempo necesario en cubrir la superficie lunar, esto es la medida del diámetro de la Luna (Fig. 5). Finalmente es posible verificar si la relación entre ambos tiempos es 2:1 ó es de 2.6:1. Fig. 4: Midiendo el cono de sombra Fig.5: Midiendo el diámetro de la Luna El objetivo más importante de esta actividad, no es el resultado obtenido para cada radio o distancia. Lo más importante es hacer notar a los estudiantes que, si ellos usan sus conocimientos e inteligencia, pueden obtener interesantes resultados disponiendo de pocos recursos. En este caso el ingenio de Aristarco fue muy importante para conseguir obtener alguna idea acerca del tamaño del sistema Tierra-Luna-Sol. Bibliografía Ros, R.M., Viñuales, E., Aristarchos' Proportions, Proceedings of 3rd EAAE International Summer School, p.55-64, Ros, R.M., Viñuales, E., Aristarco y las distancias al Sol y a la Luna, Astronomía, Astrofotografía y Astronática, 63, p.21, Ros, R.M., Viñuales, E., El mundo a través de los astrónomos alejandrinos, Astronomía, Astrofotografía y Astronáutica, 69, p.12-1, 1994.

Un estudio de eclipses de Luna y de Sol

Un estudio de eclipses de Luna y de Sol Un estudio de eclipses de Luna y de Sol Rosa M. Ros International Astronomical Union Universidad Politécnica de Cataluña, España Objetivos Comprender por qué la Luna tiene fases Comprender la causa de

Más detalles

Sol y Eclipses. Actividades y Modelos para explicar los eclipses. Rosa M. Ros Beatriz García

Sol y Eclipses. Actividades y Modelos para explicar los eclipses. Rosa M. Ros Beatriz García Sol y Eclipses Actividades y Modelos para explicar los eclipses Rosa M. Ros Beatriz García Network for Astronomy School Education - International Astronomical Union Autoridades Presidente de la Nación

Más detalles

Sistema Tierra-Luna-Sol: Fases y eclipses

Sistema Tierra-Luna-Sol: Fases y eclipses : Fases y eclipses Rosa M. Ros International Astronomical Union, Universidad Politécnica de Cataluña (Barcelona, España) Resumen Se presentan algunos modelos sobre las fases de la Luna y los eclipses de

Más detalles

Escala del Sistema Solar. Eclipses.

Escala del Sistema Solar. Eclipses. Escala del Sistema Solar. Eclipses. 1. Distancia a los planetas. Método de Copérnico. 1.1. Distancia a los planetas interiores. El método consiste en buscar la relación entre la distancia al Sol de un

Más detalles

Sol y Eclipses. Actividades y Modelos para explicar los eclipses. Rosa M. Ros Beatriz García

Sol y Eclipses. Actividades y Modelos para explicar los eclipses. Rosa M. Ros Beatriz García Sol y Eclipses Actividades y Modelos para explicar los eclipses Rosa M. Ros Beatriz García ISBN 978-950-692-136-1 Network for Astronomy School Education - International Astronomical Union Autoridades Presidente

Más detalles

Cómo puede ser utilizado el tránsito de Venus para determinar la distancia Tierra-Sol?

Cómo puede ser utilizado el tránsito de Venus para determinar la distancia Tierra-Sol? Cómo puede ser utilizado el tránsito de Venus para determinar la distancia Tierra-Sol? Leonarda Fucili, Rupert Genseberger y Rosa M. Ros * Nivel Básico para la comprensión de otros conceptos, se requieren

Más detalles

Sistema Tierra-Luna-Sol: Fases y eclipses

Sistema Tierra-Luna-Sol: Fases y eclipses : Fases y eclipses Rosa M. Ros International Astronomical Union, Universidad Politécnica de Cataluña (Barcelona, España) Resumen Se presentan algunos modelos sobre las fases de la Luna y los eclipses de

Más detalles

(semirrecta) Se llama segmento al conjunto de puntos de una recta, contenidos entre dos puntos dados, llamados extremos:

(semirrecta) Se llama segmento al conjunto de puntos de una recta, contenidos entre dos puntos dados, llamados extremos: TEM 10 Elementos de geometría * Consideramos que elementos de geometría como el punto, el plano y la recta son elementos ya conocidos intuitivamente. Los puntos se representan por letras mayúsculas:, B,

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

Área (II). El círculo. (p. 171)

Área (II). El círculo. (p. 171) Tema 5: Área (II). El círculo. (p. 171) En el Tema 3 hicimos la introducción del concepto de área, y vimos cómo se puede calcular el área de triángulos y cuadriláteros. En este tema continuaremos con el

Más detalles

UoL3: Un mundo de relaciones a partir del triángulo!

UoL3: Un mundo de relaciones a partir del triángulo! Grado 10 Matematicas - Unidad 3 Un mundo de relaciones a partir del triángulo! Título del objeto Investigar el uso de la trigonometría en las ciencias exactas relacionados (Pre clase) Grado: 10 UoL3: Un

Más detalles

Experimento MIDIENDO LA TIERRA CONICYT. Comisión Nacional de Investigación Científica y Tecnológica.

Experimento MIDIENDO LA TIERRA CONICYT. Comisión Nacional de Investigación Científica y Tecnológica. CONICYT Comisión Nacional de Investigación Científica y Tecnológica www.diadeastronomia.cl CUÁNDO? Alrededor del año 230 a.c., el científico Eratóstenes (275 194 a.c.), director de la biblioteca de Alejandría,

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos

Más detalles

GIBAS DE MARTE Rosa M. Ros, Ederlinda Viñuales Atrévete con el Universo

GIBAS DE MARTE Rosa M. Ros, Ederlinda Viñuales Atrévete con el Universo GIBAS DE MARTE Rosa M. Ros, Ederlinda Viñuales Atrévete con el Universo La Tierra está situada entre medio de los nueve planetas del sistema solar, eso hace que nuestras observaciones sean diferentes según

Más detalles

ECLIPSES DE SOL Y LUNA

ECLIPSES DE SOL Y LUNA ECLIPSES DE SOL Y LUNA ÍNDICE 1- Semejanza entre figuras geométricas. 1.1.- Razón de semejanza. 2- Tamaños y proporciones. 2.1.- Tamaños. 2.2.- Proporciones. 3- Distancias y tamaño aparente. 3.1 Distancias

Más detalles

TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor

TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes

Más detalles

UNIDAD 7 Trazo de curvas

UNIDAD 7 Trazo de curvas UNIDAD 7 Trazo de curvas El trazo de curvas se emplea en la construcción de vías para conectar dos líneas de diferente dirección o pendiente. Estas curvas son circulares y verticales. CURVAS CIRCULARES:

Más detalles

CÁLCULO DEL RADIO TERRESTRE

CÁLCULO DEL RADIO TERRESTRE 1 CÁLCULO DEL RADIO TERRESTRE El objetivo de esta actividad consistió en calcular el radio terrestre siguiendo el método que Eratóstenes empleara hace más de veinte siglos. Fue llevada a cabo conjuntamente

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) α = 5 b) β = 170 c) γ = 0 d) δ = 75 e) ε = 10 f ) η = 50 g) θ = 0

Más detalles

ACTIVIDADES SOBRE EL TAMAÑO DE LA LUNA Y SU DISTANCIA A LA TIERRA

ACTIVIDADES SOBRE EL TAMAÑO DE LA LUNA Y SU DISTANCIA A LA TIERRA Épsilon - Revista de Educación Matemática 2012, Vol. 29(1), nº 80, pp. 75-81 ACTIVIDADES SOBRE EL TAMAÑO DE LA LUNA Y SU DISTANCIA A LA TIERRA Beatriz Galán Luque Natividad Adamuz-Povedano Universidad

Más detalles

24. Tamaños y distancias celestes

24. Tamaños y distancias celestes Introducción Los griegos estaban muy interesados en los objetos que se encuentran a la vista en nuestro cielo. Fue Aristarco de Samos (ca. 310 a. C. 230 a. C.) quien presentó el primer modelo con el Sol

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

Ejercicios de trigonometría.

Ejercicios de trigonometría. Matemáticas 1ºBach CNyT. Ejercicios Tema 1. Trigonometría. Pág 1/15 Ejercicios de trigonometría. 1. Expresa en grados sexagesimales los siguientes ángulos: 1. 3 rad 2. 2π/5rad. 3. 3π/10 rad. 2. Expresa

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

Ángulos y razones trigonométricas

Ángulos y razones trigonométricas Departamento Matemáticas TEMAS 3 y 4. Trigonometría Nombre CURSO: 1 BACH CCNN 1 Ángulos y razones trigonométricas 1. Hallar las razones trigonométricas de los ángulos agudos del siguiente triángulo rectángulos.

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés

Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés Introducción a la trigonometría y a las funciones trigonométricas Shirley Bromberg Raquel Valdés Un poquito de historia Trigonometría es una palabra de etimología griega, aunque no es una palabra griega.

Más detalles

Geometría del Plano. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Plano. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Plano. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 17 Indice. 1. Líneas y Curvas. 2. Ángulos en el plano. 3. Medida de un ángulo. 4. Tipos de Ángulos. 5. Teorema de

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo Unidad 7.5: Geometría Tema 1: El círculo Lección.1: Circunferencia y círculo La circunferencia y el círculo La circunferencia es una línea curva cerrada y plana con todos sus puntos a igual distancia del

Más detalles

4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca

4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia

Más detalles

José Antonio Jiménez Nieto

José Antonio Jiménez Nieto TRIGONOMETRÍA. UNIDADES PARA MEDIR ÁNGULOS Un ángulo es una porción de plano limitada por dos semirrectas que tienen un origen común. Las unidades que más frecuentemente se utilizan para medir ángulos

Más detalles

Subtemas: -Congruencia De Triángulos. -Tipos De Ángulos. -Tipos De Triángulos

Subtemas: -Congruencia De Triángulos. -Tipos De Ángulos. -Tipos De Triángulos Subtemas: -Congruencia De Triángulos -Tipos De Ángulos -Tipos De Triángulos Congruencia de triángulos La congruencia de triángulos estudia los casos en que dos o más triángulos presentan ángulos y lados

Más detalles

MATEMÁTICAS III CUADERNILLO DE ACTIVIDADES Y TAREAS. Bachillerato General, Modalidad Mixta. Nombre del

MATEMÁTICAS III CUADERNILLO DE ACTIVIDADES Y TAREAS. Bachillerato General, Modalidad Mixta. Nombre del Bachillerato General, Modalidad Mixta MATEMÁTICAS III CUADERNILLO DE ACTIVIDADES Y TAREAS Nombre del Alumn@ Día de la clase de matemáticas Hora de la clase de matemáticas 2017 Maestra: María Luisa Rubalcava

Más detalles

1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta:

1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta: Matemáticas 3º E.S.O. pág. 1 HOJA 1: GEOMETRÍA 1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta: 2º.- Halla el área de las figuras marcadas: 3º.-

Más detalles

CÓMO HALLAR LA LATITUD DE UN LUGAR? Ederlinda Viñuales Atrévete con el Universo

CÓMO HALLAR LA LATITUD DE UN LUGAR? Ederlinda Viñuales Atrévete con el Universo CÓMO HALLAR LA LATITUD DE UN LUGAR? Ederlinda Viñuales Atrévete con el Universo La latitud de un lugar de observación puede determinarse tanto de día como de noche y además por varios caminos. En este

Más detalles

SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO.

SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO. SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO. I. INTRODUCCIÓN Arco Sección de un círculo que se encuentra entre dos puntos del círculo. Cualesquiera

Más detalles

EL MÉTODO DE ERATÓSTENES. CÁLCULO

EL MÉTODO DE ERATÓSTENES. CÁLCULO Año internacional de la Astronomía Actividades con el gnomon Descripción EL MÉTODO DE ERATÓSTENES. CÁLCULO En esta ficha se presentan distintas formas de realizar los cálculos a partir de los datos de

Más detalles

SGUICES023MT22-A16V1. SOLUCIONARIO Generalidades y Ángulos en la Circunferencia

SGUICES023MT22-A16V1. SOLUCIONARIO Generalidades y Ángulos en la Circunferencia SGUIES03MT-16V1 SLUINRI Generalidades y Ángulos en la 1 TL E RREIÓN GUÍ PRÁTI GENERLIES Y ÁNGULS EN L IRUNFERENI Ítem lternativa 1 SE E SE 3 4 5 6 7 omprensión 8 9 10 11 omprensión 1 13 14 15 E 16 17 18

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 6: Trigonometría ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4.

Más detalles

Esferoide Oblato. Esfera Axis mayor Axis menor. Elipsoide. Elipsoide Axis Mayor > Axis Menor. Esfera Axis Mayor = Axis Menor. Axis Menor.

Esferoide Oblato. Esfera Axis mayor Axis menor. Elipsoide. Elipsoide Axis Mayor > Axis Menor. Esfera Axis Mayor = Axis Menor. Axis Menor. El Estudio de la Tierra Características Generales del Globo Terráqueo La forma de la Tierra (modelos) La forma de la Tierra ha sido eje de muchas controversias. Algunas de las ideas que se tenía era: Plana

Más detalles

Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :

Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de : Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una

Más detalles

Seno (matemáticas) Coseno Tangente

Seno (matemáticas) Coseno Tangente Seno (matemáticas), una de las proporciones fundamentales de la trigonometría. En un triángulo rectángulo, el valor del seno (que suele abreviarse sen) de un ángulo agudo es igual a la longitud del cateto

Más detalles

PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS

PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS (adaptado y traducido de textos de Internet por Luis E.) Hacia 1700 gracias a Kepler- las distancias relativas entre los seis planetas

Más detalles

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES VECTORES REPRESENTACIÓN DE UERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) 5 m m

Más detalles

Arcos, ángulos centrales y cuerdas de una circunferencia

Arcos, ángulos centrales y cuerdas de una circunferencia Arcos, ángulos centrales y cuerdas de una circunferencia Forma, Espacio y Medida El objetivo de la misma es identificar los sectores circulares de una circunferencia y calcular su área. Esta situación

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1) Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS

COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS GUÍA N DE TRIGONOMETRÍA IV MEDIO DIFERENCIADO MATEMÁTICO )Completa la siguiente tabla que indica la relación entre valores en radianes y

Más detalles

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGIN 212 Recorta en cartulina cada una de estas figuras y sujétalas en palillos de dientes. Sosteniendo el palillo entre los dedos y soplando en el lateral, qué ves en cada caso? Triángulo ono

Más detalles

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 8: Funciones trigonométricas Dado el ángulo α, halla la medida exacta del ángulo en radianes o en grados

Más detalles

TRIGONOMETRIA. π radianes <> 180º

TRIGONOMETRIA. π radianes <> 180º TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

Carrera: Diseño Industrial. 1) Expresar en radianes: a) 75º = b) 63º = c) 18º = d) 7º = a) 120º = b) 135º = c) 180º = d) 360º = e) 57º = f) 45º =

Carrera: Diseño Industrial. 1) Expresar en radianes: a) 75º = b) 63º = c) 18º = d) 7º = a) 120º = b) 135º = c) 180º = d) 360º = e) 57º = f) 45º = TRIGONOMETRÍ 1) Expresar en radianes: a) 75º = b) 63º = c) 18º = d) 7º = e) 100 G = f) 80 G = g) 50 G = h) 3 G = 2) Expresar en grados centesimales: a) 2 π radián = b) 2π radián = c) 1º = d) 90º = 3) Expresar

Más detalles

"Unidad II" Razones trigonométricas. Ing. Arnoldo Campillo Borrego.

Unidad II Razones trigonométricas. Ing. Arnoldo Campillo Borrego. "Unidad II" Razones trigonométricas Ing. Arnoldo Campillo Borrego. 1 ÍNDICE Definición de funciones trigonométricas.pag. 3 Conversión de ángulos..pag. 3 Conversión de grados a radianes pag. 3 Conversión

Más detalles

PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a):

PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a): PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.4 Cálculo de la medida de ángulos inscritos y centrales, así como de arcos, el área de sectores

Más detalles

Relación de Contacto y los Ángulos de Aproximación y Receso.

Relación de Contacto y los Ángulos de Aproximación y Receso. Relación de Contacto y los Ángulos de Aproximación y Receso. José María Rico Martínez Departamento de Ingeniería Mecánica. División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato Carretera

Más detalles

Midiendo la Distancia al Sol usando el Tránsito de Venus

Midiendo la Distancia al Sol usando el Tránsito de Venus Midiendo la Distancia al Sol usando el Tránsito de Venus David Rodríguez (Universidad de Chile) Con el tránsito de Venus el 5 de junio de 2012, astrónomos alrededor del mundo están coordinando grupos para

Más detalles

Halla los siguientes perímetros y áreas:

Halla los siguientes perímetros y áreas: 73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes

Más detalles

Tema 8 Medida de ángulos. Trigonometría

Tema 8 Medida de ángulos. Trigonometría Tema 8 Medida de ángulos. Trigonometría Grados sexagesimales, centesimales y radianes Operaciones con grados Conversión entre unidades Funciones trigonométricas Actividades GRADOS SEXAGESIMALES Y RADIANES

Más detalles

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio:

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio: Trigonometría La trigonometría trata sobre las relaciones entre los ángulos y los lados de los triángulos. El concepto fundamental sobre el que se trabaja es el de ángulo. Dos semirrectas con un origen

Más detalles

Teorema de Tales. tercero. 60 secundaria

Teorema de Tales. tercero. 60 secundaria Teorema de Tales 60 secundaria 9 D A B Una aplicación de Teoremas de Tales C Existen dos teoremas en relación a la geometría clásica que reciben el nombre de Teorema de Tales, ambos atribuidos al matemático

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

MOVIMIENTOS DE LA TIERRA

MOVIMIENTOS DE LA TIERRA MOVIMIENTOS DE LA TIERRA Está sujeta a más m s de 10 movimientos Movimiento de rotación Movimiento de traslación 930 millones de km Distancia media al sol 1 U.A. (150 millones km) 30 km por segundo Órbita

Más detalles

MUNICIPIO DE MEDELLÍN GRADO 10

MUNICIPIO DE MEDELLÍN GRADO 10 TALLER CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 1 de enero de 2017 MUNICIPIO DE MEDELLÍN GRADO 10 EJERCICIOS Y PROBLEMAS DE APLICACIÓN: 1. Determina el complemento de 52. 2.

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

Departamento de Física y Matemáticas Grado de Primaria Curso Matemáticas II

Departamento de Física y Matemáticas Grado de Primaria Curso Matemáticas II Departamento de Física y Matemáticas Grado de Primaria urso 2016-2017 Matemáticas II 9 de enero de 2017 1. Dibuja la circunferencia que pasar por los puntos, y de la figura, razonando el procedimiento

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

Guía Nº 11PSU NM 4: Circunferencia. Nombre: Curso: Fecha:

Guía Nº 11PSU NM 4: Circunferencia. Nombre: Curso: Fecha: entro Educacional San arlos de ragón. pto. de Matemática. Prof.: Ximena Gallegos H. Guía Nº PSU NM 4: ircunferencia Nombre: urso: Fecha: prendizaje Esperado: etermina medidas angulares, utilizando propiedades

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.

ANGULOS. La unidad de medida es el grado sexagesimal. La circunferencia completa  mide 360º (grados sexagesimales). Además considere que. PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:

TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)

Más detalles

EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:

EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos: Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros

Más detalles

1º ESO TEMA 13 LONGITUDES Y ÁREAS

1º ESO TEMA 13 LONGITUDES Y ÁREAS 1º ESO TEMA 13 LONGITUDES Y ÁREAS 1 1.- PERÍMETRO Y ÁREA DE UNA FIGURA PLANA Perímetro de una figura 1.- PERÍMETRO Y ÁREA DE UNA FIGURA PLANA Área de una figura Tareas Ejercicios: 1,, 3, 46 y 47 3 .- MEDIDAS

Más detalles

SEMANA 01: LA ESCALA: DEFINICIÓN, TIPOS, ESCALÍMETRO. PROTACTOR

SEMANA 01: LA ESCALA: DEFINICIÓN, TIPOS, ESCALÍMETRO. PROTACTOR SEMANA 01: LA ESCALA: DEFINICIÓN, TIPOS, ESCALÍMETRO. PROTACTOR 1. LA ESCALA Es la proporción de aumento o disminución que existe entre las dimensiones reales y las dimensiones representadas de un objeto.

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

(determinación de dominio, imagen y ceros) de las gráficas de las funciones seno, coseno y tangente. º 135º 120º 240º 300º 315º 270º

(determinación de dominio, imagen y ceros) de las gráficas de las funciones seno, coseno y tangente. º 135º 120º 240º 300º 315º 270º TRABAJO PRÁCTICO Nº 5 FUNCIONES TRIGONOMÉTRICAS En este eje continuaremos con la competencia básica de Resolución de Problemas y además las siguientes competencias específicas 1. Analizar una función o

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

Unidad didáctica 9 Geometría plana

Unidad didáctica 9 Geometría plana Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice

Más detalles

1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene:

1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene: 1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene: a) 36º b) 86º c) 120º d) 60º 7. Un dirigible que está volando a 800 m de altura, distingue un pueblo con un

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU)

MOVIMIENTO CIRCULAR UNIFORME (MCU) MOVIMIENTO CIRCULAR UNIFORME (MCU) Ángulo Es la abertura comprendida entre dos radios abiertos que limitan un arco de circunferencia. B _ r θ _ r A Θ= desplazamiento angular r = vector de posición A =

Más detalles

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Algebra y Trigonometría Taller 7: Funciones Trigonométricas de Números Reales Encuentre el ángulo complementario de α. 1) α = 7 39 58

Más detalles

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7 EJERCICIOS DE RESOLUCIÓN DE TRIÁNGULOS (TEMA 7) 1.- La base de un triángulo isósceles mide 5 cm y el ángulo opuesto a dicha base es de 55º. Calcula el área del triángulo. 2.- Hallar el área de un octógono

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles
Sitemap