Difracción e Interferencia: Experimento de Young


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Difracción e Interferencia: Experimento de Young"

Transcripción

1 Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción Para dar explicación a ciertos fenómenos producidos por a luz, es necesario hacer la consideración de su comportamiento como onda electromagnética. Si un haz de luz incide sobre una rejilla de difracción, podemos producir dos fuentes de luz (ondas electromagnéticas) coherentes que interfieren entre sí, dicho fenómeno (difracción) se puede observar en una pantalla lejana en la cual se ven proyectados puntos de luz que se encuentran espaciados de manera equidistante respecto de un punto central, el cual es el punto que coincide con la dirección de incidencia de la fuente de luz. Utilizando el parámetros medibles como distancias, se pretende medir la longitud de onda del láser y posteriormente determinar el tipo de fuente que emite la luz. Objetivos 1. Calcular la longitud de onda de un láser e identificar que tipo de fuente genera la luz. 2. Conocer como interactuan dos ondas mediante el fenómeno de interferencia observando los patrones de difracción. 3. Estudiar el comportamiento ondulatorio de la luz. Marco Teórico Interferencia La interferencia óptica es un fénomeno que se produce cuando dos o más ondas de luz monocromática (que tienen la misma frecuencia a lo largo de su trayectoria) interacctúan produciendo una irradiancia resultante la cual se deriva de la suma de las irradiancias individuales. Si dos o más ondas de luz se superponen la perturbación resultante (campo electromagnético) será la suma vectorial de las perturbaciones originales: E = E 1 + E 2 + E n (1) Consideremos el caso en el cual existen dos fuentes luz coherentes (descritas en la figura 1) cuyo campo eléctrico se describe por: Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 1

2 E 1 = E 01 cos ( K r 1 ωt + Φ) (2) E 2 = E 02 cos ( K r 2 ωt + Φ) (3) Figura 1: Fuentes de luz coherentes Si las fuentes se superponen en un punto P, el campo resultante esta dado por: E R = E 1 + E 2 (4) E R = E 01 cos ( K r 1 ωt + Φ) + E 02 cos ( K r 2 ωt + Φ) (5) Tomando en cuenta que la irradiancia es directamente proporcional al cuadrado del campo eléctrico: I = ɛve 2 R (6) I = ɛv( E 1 + E 2 ) ( E 1 + E 2 ) (7) I = ɛv(e E E 1 E 2 ) (8) Al término cruzado ( E 1 E 2 ) se le conoce como interferencia, si desarrollamos dicho producto punto llegamos al siguiente resultado: E 1 E 2 = E 01 E02 cos (δ) (9) Donde δ es igual al desfase que existe entre ambas ondas al llegar al punto P: Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 2

3 δ = K(r 1 r 2 ) δ = 2π λ (r 1 r 2 ) (10) Ahora notemos que la irradiancia será máxima cuando cos (δ) = 1: Si igualamos las expresiones (10) y (11) obtenemos: δ = 0, ±2π, ±4π (11) r 1 r 2 = 0, ±λ, ±2λ (12) Observamos que la condición dada por (12) es necesaria para que la irradiancia producida por la fuente sea máxima. Experimento de Young Un método común para la producción de dos fuentes de luz coherente, es utilizar una fuente monocromática (un láser) para iluminar una barrera con dos pequeñas aperturas. La luz es coherente ya que ambas son producidas por la misma fuente, la barrera nos ayuda a producir dos ondas distintas. Tras pasar la barrera las dos nuevas ondas interfieren entre ellas generando el patrón de interferencia en una pantalla lejana como se muestra en la figura 2. Figura 2: Sistema para el experimento de Young Como consideramos que la pantalla se encuentra muy lejos de la rendija, entonces podemos considerar la siguiente aproximación: r r 1 r 2 (13) Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 3

4 Podemos notar de la figura que: r 1 r 2 = d sin (θ n ) (14) Figura 3: Imagen mostrando el patrón formado en el experimento. Igualando las ecuaciones (12) y (14) obtenemos: d sin (θ n ) = nλ (15) Reescribiendo la ecuación anterior en términos de parámetros que podemos medir como la distancia entre los puntos del patrón (Y n ), y la distancia de la rendija a la pantalla, obtenemos: Materiales y Equipo dy n = nλ (16) Y 2 n + L2 Puntero láser color verde nm y color rojo nm Placa de Cornell Riel Soportes ópticos ajustables Papel milimetrado Plomada y nivel Cinta métrica y regla Gafas protectoras Réplica de 1000 líneas/mm Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 4

5 Procedimiento Experimental Preparación Se preparan los elementos necesarios sobre un riel que permita el desplazamiento de los mismos con relativa facilidad. Se debe tener la precaución que el riel este completamente nivelado sobre la superficie y que permita la lectura fácil de las cantidades. El uso de niveles y plomadas es necesario para lograr esto de una manera eficiente. Se fija una cinta métrica (de longitud suficiente para cubrir todo el riel) para poder registrar las distancias ya sea de la pantalla o de la rendija de una manera adecuada. Para colocar la pantalla, el procedimiento es similar. Primero se busca marcar el centro de la tabla base. Utilizando una plomada se realiza esta marca para asegurar que quede totalmente vertical. En el papel se traza un línea central y luego se busca que esta y la realizada sobre la tabla coincidan. De esta manera se logra que la hoja quede alineada tanto horizontal como verticalmente. Se monta el láser de manera que este quede paralelo al riel y que incida de forma perpendicular a la rendija. Registro de Datos: Cálculo de la Longitud de Onda. Métodos Estadísticos 1. Fijar la longitud L y registrar su valor. 2. Hacer incidir el láser sobre la placa de Cornell y formar el patrón de interferencia. 3. Registrar los primeros cuatro (4) valores de y n para la parte derecha del patrón. 4. Repetir el procedimiento para otro valor de longitud L Ajuste por Mínimos Cuadrados 1. Fijar la longitud L y hacer incidir el láser sobre la placa de Cornell. 2. Registrar todos los valores posibles de y n sobre el papel milimetrado tanto en la parte izquierda como derecha del patrón. Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 5

6 Tablas de Datos n L (m) j Y j (mm) d= δ L = δ Y = Cuadro 1: Tabla de datos para el método estadístico. n j Y j (mm) d= L= δ L = δ Y = Cuadro 2: Tabla de datos para el método de mínimos cuadrados Tratamiendo de Datos Experimentales Cálculo de la Longitud de Onda por Métodos Estadísticos 1. Para cada valor obtenido de Y n calcular el valor de la longitud de onda λ. Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 6

7 2. A partir de los valores calculados en el inciso anteiror, determinar el valor medio de la longitud de onda λ. 3. Determine el error sistemático (δ λ ) de cada uno de los valores calculados de λ y obtenga el valor promedio para el error sistemático. 4. Determine el error estadístico (σ λ ) de la medición indirecta Determine el error absoluto de la medición de lambda y obtenga su valor λ = λ ± λ. 6. Determine la incertidumbre porcentual de la longitud de onda λ Cálculo de la Longitud de Onda por Ajuste de Mínimos Cuadrados 1. A partir de los datos recopilados en el Cuadro 2 genere un conjunto de datos lineales de la forma y = ax + b donde: y d x n Y n Y 2 n + L 2 2. A partir de los datos generados realizar una regresión lineal para determinar el valor de las constantes de ajuste a y b con sus incertidumbres absolutas. 3. Realizar la gráfica de los puntos linealizados y de la función de ajuste obtenida. 4. Obtenga el valor de λ con su incertidumbre absoluta: λ = λ ± λ 5. Determine la incertidumbre porcentual de la medición indirecta de λ Comparación de resultados 1. Elabore un gráfico donde muestre ambos resultados obtenidos y compare de forma gráfica con el valor o rango dado por el fabricante. Análisis de Resultados 1. Los valores obtenidos con sus incertidumbres absolutas están dentro del rango dado por el fabricante? 2. La incertidumbre sistemática de λ se mantiene constante a lo largo de todas las mediciones de la parte 1? A qué se debe este resultado? 3. Qué método presenta mayor precisión en los resultados finales y cúal es la posible causa? 4. Son aceptables los resultados obtenidos en la experiencia? Justifique su respuesta en base a resultados cuantitativos. 1 Utilice la desviación de la media. Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 7

8 Cuestionario 1. Qué establece el principio de Babinet? 2. Es posible decir que un haz de electrones tendría un comportamiento similar si se hace incidir en una rendija múltiple? 3. Que comportamiento de la luz se comprueba con este experimento? 4. Qué son ondas de materia? 2 5. Qué establece el principio de Huygens y como aplica a la experiencia realizada? Referencias [1] Pérez, J., Raudales, R., López, R. Difracción e Interferencia, Escuela de Física, Universidad Nacional Autónoma de Honduras, IIPA [2] Serway, Raymond A. Moses, Clement J. Moyer, Curt A. Modern Physics, Thomson Learning, Investigue sobre el principio de De Broglie Elaborado por: Sofía Escobar, Miguel Serrano y Jorge Pérez 8

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

Interferencia y Difracción

Interferencia y Difracción Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Año 2011 Proyecto de Física III Interferencia y Difracción Integrantes Lomenzo, María Florencia Ing. Biomédica (flor_lomenzo@hotmail.com)

Más detalles

Interferencia Luminosa: Experiencia de Young

Interferencia Luminosa: Experiencia de Young Interferencia Luminosa: Experiencia de Young Objetivo emostrar el comportamiento ondulatorio de la luz a través de un diagrama de interferencia. Equipamiento - Lámpara de Filamento rectilíneo - Soporte

Más detalles

7. Difracción n de la luz

7. Difracción n de la luz 7. Difracción n de la luz 7.1. La difracción 1 7. Difracción de la luz. 2 Experiencia de Grimaldi (1665) Al iluminar una pantalla opaca con una abertura pequeña, se esperaba que en la pantalla de observación

Más detalles

Midiendo la longitud de onda de la luz

Midiendo la longitud de onda de la luz Midiendo la longitud de onda de la luz Hoja de trabajo: Objetivo: calcular la longitud de onda de la luz de un láser por interferometría de Young e interferometría de Michelson Primera parte: Cálculo de

Más detalles

El puntero láser y el diámetro de un cabello. Prof. Pablo Adrián Nuñez. Instituto San José de Morón 2007

El puntero láser y el diámetro de un cabello. Prof. Pablo Adrián Nuñez. Instituto San José de Morón 2007 RESUMEN: El puntero láser y el diámetro de un cabello. Prof. Pablo Adrián Nuñez. pablo_nuniez2000@yahoo.com.ar Instituto San José de Morón 2007 En este trabajo se muestra un método experimental basado

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Red de difracción (medida de λ del láser) Fundamento

Red de difracción (medida de λ del láser) Fundamento Red de difracción (medida de λ del láser) Fundamento Si sobre una superficie transparente marcamos en un gran número de rayas paralelas y equidistantes tendremos una red de difracción. El número de rayas

Más detalles

Capítulo 4. Rejillas de difracción.

Capítulo 4. Rejillas de difracción. Capítulo 4 Rejillas de difracción. 4.1 Introducción. En este capítulo se estudiarán las rejillas de difracción así como se mencionará el papel que juega dentro de la óptica, también se muestra una imagen

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Momento de Torsión Magnética

Momento de Torsión Magnética Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento

Más detalles

Tutoría 2: Experimentos de difracción

Tutoría 2: Experimentos de difracción Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

Información de la práctica

Información de la práctica P-SLM-00 PRÁCTICA DE LABORATORIO NÚM 0 Página 1 de 10 Rev. nº 1.0 Fecha 28/10/2010 SOFTWARE DE SIMULACIÓN BASADO EN RAYLEIGH-SOMMERFELD Equation Chapter 1 Section 1 Información de la práctica Título: Asignatura:

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

EJERCICIO. Dadas las rectas y

EJERCICIO. Dadas las rectas y EJERCICIO Dadas las rectas x4 y1 z y z 8 r : y s: x1 1 3 se pide: a) Comprueba que las rectas r y s se cruzan. b) Determina la ecuación de la perpendicular común. c) Calcula la distancia entre ambas. Perpendicular

Más detalles

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN 1.- Equipamiento y montaje Componentes del equipo Los accesorios necesarios para la realización de la presente práctica se enumeran a continuación: 1. Caja de Almacenamiento

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO

LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO Juan Pirotto, Christopher Machado, Eduardo Rodríguez INTRODUCCIÓN: El trabajo en síntesis se resume al análisis de un movimiento de proyectiles y uno rectilíneo

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

PRÁCTICA Nº.- LENTES.

PRÁCTICA Nº.- LENTES. PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra abnervelazco@yahoo.com Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

1. Análisis Teórico. 1.1. Microscopio Óptico. 1.2. Teoría de Formación de Imágenes de Abbe. Resolución. Laboratorio de Ondas y Óptica.

1. Análisis Teórico. 1.1. Microscopio Óptico. 1.2. Teoría de Formación de Imágenes de Abbe. Resolución. Laboratorio de Ondas y Óptica. Laboratorio de Ondas y Óptica Práctica N 7 Microscopía Óptica Digital Departamento de Física, FaCyT. Universidad de Carabobo, Venezuela. Objetivos Estudiar el funcionamiento de un Microscopio Óptico Preparación

Más detalles

MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π

MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π 1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Propagación de las ondas Fenómenos ondulatorios

Propagación de las ondas Fenómenos ondulatorios Propagación de las ondas Fenómenos ondulatorios IES La Magdalena. Avilés. Asturias Cuando se trata de visualizar la propagación de las ondas en un papel se recurre a pintar los llamados frentes de onda.

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s

Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s Velocidad de la Luz Métodos fallidos, como el de Galileo Galilei en 1667. Método astronómico de Olaf Roemer en 1675, concluye que c > 2 x 10 8 m/s (periodo de eclipse de satélites de Jupiter). Método de

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5

Más detalles

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1.1 OBJETIVOS: Comprender los aspectos fundamentales de un interferómetro de Michelson.

Más detalles

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, anamcg@ciudad.com.ar Instituto Privado Argentino

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen

Más detalles

Medición de resistencia por el método de amperímetro-voltímetro

Medición de resistencia por el método de amperímetro-voltímetro Medición de resistencia por el método de amperímetro-voltímetro Objetivos Determinar el valor de una resistencia por el método de amperímetro voltímetro. Discutir las incertezas propias del método y las

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

porque la CALIDAD es nuestro compromiso

porque la CALIDAD es nuestro compromiso PRÁCTICA 9 LEY DE HOOKE 1. NORMAS DE SEGURIDAD El encargado de laboratorio y el docente de la asignatura antes de comenzar a desarrollar cada práctica indicaran las normas de seguridad y recomendaciones

Más detalles

PRÁCTICA 14. Reflexión y refracción

PRÁCTICA 14. Reflexión y refracción PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

Formación de imágenes en lentes convergentes

Formación de imágenes en lentes convergentes Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Formación de imágenes en lentes convergentes. Estudiar un sistema óptico simple. 2. Determinar experimentalmente

Más detalles

Capítulo 23. Microscopios

Capítulo 23. Microscopios Capítulo 23 Microscopios 1 Aumento angular El aumento angular m (a) de una lente convergente viene dado por: m (a) = tan θ rmim tan θ ob = q 0.25 (d + q )p en donde d es la separación entre la lente y

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipo de óptica ondulatoria con Láser U17303 Instrucciones de uso 10/08 Alf 1. Advertencias de seguridad El Láser emite una radiación visible de una longitud de onda de 635 nm con

Más detalles

Parte 4: La Luz. Telescopio óptico espacial Hubble. Telescopio de Galileo. J.M. Maxwell

Parte 4: La Luz. Telescopio óptico espacial Hubble. Telescopio de Galileo. J.M. Maxwell Parte 4: La Luz 1 Parte 4: La Luz J.M. Maxwell 1831-1879 Telescopio de Galileo Es imposible pensar en vida sin luz. Los vegetales, base de la cadena alimenticia, a través de la fotosíntesis extraen de

Más detalles

Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es:

Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: Precálculo 1 - Ejercicios de Práctica 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: a. 2 b. 1 c. 0 d. 1 2. La ecuación de la línea (recta) con pendiente 2/5 e intercepto

Más detalles

SISTEMAS ELÁSTICOS. Pablo Játiva Carbajal. Prácticas Curso : Práctica sobre sistemas elásticos

SISTEMAS ELÁSTICOS. Pablo Játiva Carbajal. Prácticas Curso : Práctica sobre sistemas elásticos SISTEMAS ELÁSTICOS Pablo Játiva Carbajal Prácticas Curso 20-202: Práctica sobre sistemas elásticos Profesores: Antonio J. Barbero García y Mª Mar Artigao Castillo Sea un resorte en un instante inicial:

Más detalles

Laser LAX 300. Instrucciones

Laser LAX 300. Instrucciones Laser LAX 300 es Instrucciones A1 4 3 2a 1a 2b 8 4 5 9 1b 6 7 A2 A3 11 10 A4 A5 A6 L1 ± 0,3 mm/m ± 23/64 A7 L1 ± 0,3 mm/m ± 23/64 L2 ± 1/4 ± 0,2 mm/m B1 B2 90 C1 C2 C3 C4 X1 X2 X3 5m 5m S = 5m X X S

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante

Más detalles

Práctica 4. Interferencias por división de amplitud

Práctica 4. Interferencias por división de amplitud Interferencias por división de amplitud 1 Práctica 4. Interferencias por división de amplitud 1.- OBJETIVOS - Estudiar una de las propiedades ondulatorias de la luz, la interferencia. - Aplicar los conocimientos

Más detalles

Ingeniería en Sistemas Informáticos

Ingeniería en Sistemas Informáticos Facultad de Tecnología Informática Ingeniería en Sistemas Informáticos Matéria: Electromagnetismo- Estado sólido I Trabajo Práctico N 2 Circuitos Eléctricos Ley de Ohm Alumnos: MARTINO, Ariel GARIGLIO,

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor Lentes delgadas Una lente delgada es un sistema óptico centrado formado por dos dioptrios, uno de los cuales, al menos, es esférico, y en el que los dos medios refringentes extremos poseen el mismo índice

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

UNIDAD 1 Estadimetría

UNIDAD 1 Estadimetría UNIDAD 1 Estadimetría La estadimetría es un método que sirve para medir distancias y diferencias de elevación indirectamente, es rápido pero su precisión no es muy alta. Este procedimiento se emplea cuando

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana.

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana. 35 Curvas de densidad Existe alguna manera de describir una distribución completa mediante una única expresión? un diagrama tallo-hoja no es práctico pues se trata de demasiados datos un histograma elimina

Más detalles

Demostración de la Interferencia Acústica

Demostración de la Interferencia Acústica 54 Encuentro de Investigación en Ingeniería Eléctrica Zacatecas, Zac, Marzo 17 18, 2005 Demostración de la Interferencia Acústica Erick Fabián Castillo Ureña, Depto. de Ingeniería Eléctrica y Electrónica,

Más detalles

Límite de una función

Límite de una función CAPÍTULO 3 Límite de una función OBJETIVOS PARTICULARES. Comprender el concepto de límite de una función en un punto. 2. Calcular, en caso de que eista, el límite de una función mediante la aplicación

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

Guía de Ejercicios de Ondas Electromagnéticas

Guía de Ejercicios de Ondas Electromagnéticas UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Nueva ley de Lorentz

Nueva ley de Lorentz Nueva ley de Lorentz Manuel Hernández Rosales 26 de septiembre de 2013 Abstract En este artículo se propone una modicación a la expresión de la fuerza de Lorentz adecuada para explicar el experimento de

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles
Sitemap