En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca."

Transcripción

1 Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía de manera continua su amplitud y cambia de polaridad periódicamente. Las variaciones hacia arriba y hacia debajo de la forma de onda corresponden a cambios de magnitud. El eje cero es una línea horizontal ubicada en el centro del trazo. De esta manera, los voltajes que están encima de esta línea tienen una polaridad positiva, mientras que los voltajes que se encuentran por debajo tienen polaridad negativa. Una revolución completa de una espiga alrededor de un círculo se conoce como ciclo y una revolución igual a la mitad de un ciclo recibe el nombre de alternación, figura 2. Se puede definir a un ciclo como el que incluye las variaciones entre dos puntos sucesivos que tienen el mismo valor y que varían en el mismo sentido. Dado que el ciclo de voltaje de la figura 2 corresponde a una rotación completa de la espira alrededor de un círculo, resulta conveniente considerar las diferentes partes de un ciclo como ángulos. Una rotación completa alrededor de un círculo es igual a 360º. La mitad de un ciclo (una alternación) corresponde a 180º, mientras que una

2 Página 2 de 7 rotación de un cuarto de ciclo es igual a 90º. Por consiguiente el siguiente ciclo van desde 180º hasta 360º. La forma de onda del voltaje de las figuras 1 y 2 recibe el nombre de onda seno, onda senoidal o sinusoide, ya que la magnitud del voltaje inducido es proporcional al seno del ángulo de rotación del movimiento que produce el voltaje. La forma de onda del voltaje producido por el movimiento circular de la espira es un senoide, debido a que el voltaje inducido aumenta hasta alcanzar un valor máximo en que el ángulo de rotación es de 90º cuando la espira se encuentra en posición vertical; de la misma manera, el seno del ángulo de rotación aumenta hasta alcanzar un valor máximo cuando el ángulo es de 90º. El voltaje inducido y el seno del ángulo guardan relación entre sí durante todo el ciclo de 360º. El valor instantáneo de cualquier voltaje senoidal en función del ángulo de rotación está expresado de acuerdo a la fórmula 1. v= V M sen Θ... (1) donde Θ es el ángulo, sen es la abreviatura que se emplea para el seno, V M es el máximo valor de voltaje y v es el valor instantáneo del voltaje para cualquier ángulo. Las características de una forma de onda senoidal de ca son: cero. El ciclo es de 360º o 2 π rad. La polaridad cambia cada medio ciclo. Los valores máximos aparecen cuando el ángulo es de 90º a 270º. El valor de la forma de onda es cero cuando el ángulo es de 0º o 180º La mayor rapidez de cambio de la forma de onda ocurre cuando cruza el eje La forma de onda cambia con más lentitud cuando alcanza su valor máximo. Dado que una onda senoidal de tensión o corriente alterna tienen muchos valores instantáneos a lo largo de todo un ciclo, resulta conveniente definir magnitudes específicas para poder comparar una forma de onda con otra. Como se observa en la figura 3, se puede especificar el valor pico, promedio, raíz cuadrática media (rms), picopico y se pueden definir tanto para la tensión como para la corriente alternas. Tensión pico. Definida como el máximo valor de la corriente o del voltaje, en donde, los valores pico pueden ser positivos o negativos. Cuando se incluyen los dos valores pico se define como tensión pico a pico (p-p) el cual es igual al doble del voltaje pico debido a que los dos voltajes pico son simétricos. Notar que los dos voltajes picos no pueden ocurrir al mismo tiempo. Además que en algunas formas de onda los dos voltajes pico no son iguales.

3 Página 3 de 7 La tensión promedio (figura 3), es igual al promedio aritmético de todos los voltajes de una onda senoidal durante una alternancia o semiciclo. Para obtener el promedio se hace uso del medio ciclo ya que, en todo un ciclo, el valor promedio es cero. Al sumar los valores de la función seno hasta 180º lo cual es una alternancia y el resultado es dividido por el número de valores, el promedio es igual a Dado que el valor pico de una onda seno es uno y su promedio es igual a 0.637, se tiene entonces Valor promedio = valor pico...(2) Tensión efectiva (raíz cuadrática media). Una de las maneras más comunes de especificar una magnitud de una forma de onda senoidal, consiste en proporcionar su valor para un ángulo de 45º, el cual es igual a 70.7 % del valor pico. Este valor toma el nombre de raíz cuadrática media (r m s). V rms = x Tensión pico...(3) O V r m s = V pico (4) Como por ejemplo un valor que siempre se especifica como rms es la tensión de línea de ca. tiene: Como la tensión pico a pico es el doble de la tensión pico de la formula 3 se V p-p = 2 x x V rms (5) O V p-p = x V rms (6)

4 Página 4 de 7 El factor del valor rms se obtiene al tomar la raíz del promedio (media) del cuadrado de todos los valores de la onda seno. Si se toma el seno de cada ángulo que se encuentra en el ciclo (0-180º), se eleva al cuadrado, se suman todos estos valores, la suma se divide entre el número de valores y se toma la raíz cuadrada de este resultado, se obtiene arroja los mismos resultados para una alternancia de (0-180º) y (180º- 360º). La ventaja del valor rms tanto para la corriente como para la tensión, es que proporciona una medida basada en la capacidad de la onda seno para producir potencia, la cual se define como I 2 R o V 2 / R. En consecuencia, el valor rms de una onda senoidal corresponde al valor de voltaje o corriente directa necesário para tener la misma disipación de potencia en forma de calor, por esta razón, el valor rms es conocido también como valor eficaz. El cociente del valor rms y de un valor promedio es conocido como factor de forma. En una onda senoidal, el valor de este cociente es / = 1.11 El número de ciclos por segundo es definido como frecuencia la cual es denotado como f (figura 4). en la definición de frecuencia se involucra el factor tiempo.

5 Página 5 de 7 La frecuencia aumenta con forme el número de ciclos por segundo se incrementa y la duración de cada ciclo disminuye, como se muestra en la figura 4. cuando dicha frecuencia es alta los valores de la onda cambian con mayor rapidez. Un ciclo completo es medido entre dos puntos sucesivos que tienen el mismo valor y la misma dirección, en la figura 4 el ciclo se mide a partir de los puntos en donde la onda cruza al eje 0 y se dispone a aumentar de valor en la dirección positiva. Con una escala igual en el tiempo se puede notar en la figura 4 que la forma de onda en la gráfica inferior tiene mas ciclos que la onda superior por lo que su frecuencia es mayor. Cuando se comparan dos ondas senoidales, la amplitud no guarda ninguna relación con la frecuencia. Dos ondas pueden tener la misma frecuencia y diferentes amplitudes, la misma amplitud pero diferentes frecuencias o diferentes amplitudes y frecuencias. La amplitud indica la magnitud de la corriente o voltaje, mientras que la frecuencia señala la rapidez de cambio con respecto al tiempo de la amplitud en ciclos por segundo. La unidad de la frecuencia es el Hertz (Hz) la cual es igual a un ciclo por segundo. El tiempo de duración de un ciclo recibe el nombre de periodo (T) (de tiempo). Por ejemplo, cuando la frecuencia es de 60 Hz, el tiempo de duración de un ciclo es 1 / 60 s, la frecuencia y el periodo son recíprocos: T = 1 / f o f = 1 / T...(7) Entre más grande sea la frecuencia menor será el periodo Angulo de fase. De acuerdo a la figura 5 cada voltaje tiene la misma forma de onda, pero la onda B comienza en un máximo, mientras que la onda A comienza en cero.

6 Página 6 de 7 cuando la onda B completa su ciclo de 360º, regresa al valor máximo en que comenzó. La onda A siempre comienza y termina su ciclo en el valor cero. En consecuencia, respecto al tiempo, los valores de la onda B se adelantan a los valores de voltaje de la onda A. Este adelanto en el tiempo es igual a un cuarto de revolución, es decir a 90º. Esta diferencia es el ángulo de fase entre las ondas B y A. El ángulo de fase entre las ondas B y A (90º) se mantiene a lo largo de todo el ciclo y en ciclos sucesivos, siempre y cuando las dos ondas tengan la misma frecuencia. En cualquier tiempo, la onda B toma el valor que tendrá la onda A 90º después. Para poder comparar el ángulo de fase entre dos ondas, es necesario que tengan la misma frecuencia, de no ser así, el ángulo de fase cambiará. Además, dicho ángulo sólo se mide en todas aquellas formas de onda que son senoidales. En este caso, las amplitudes de las ondas pueden ser diferentes. Las dos formas de onda de la figura 5 representan una onda senoidal y otra cosenoidal, respectivamente, que se encuentran a 90º fuera de fase. Un ángulo de fase de 90º significa que una de las ondas alcanza su amplitud máxima cuando el valor de la otra es igual a cero. Sin embargo puede considerarse también que la onda B es una onda seno que comienza 90º antes en el tiempo que la onda B. Este valor del ángulo de fase para formas de onda de corriente y voltaje tiene muchas aplicaciones en circuitos de corriente alterna que contienen capacitancias e inductores. Para comparar las fases de voltajes y corriente alternos, resulta más conveniente utilizar diagramas fasoriales, los cuales corresponden a ondas de voltaje y corriente. V A y V B indican los parámetros fasoriales 1 del voltaje de un generador. Un fasor es un parámetro que tiene magnitud y dirección (vector), la longitud de la línea señala la magnitud del voltaje alterno, siempre y cuando se emplee la misma unidad para todos los fasores. Los términos favor y vector se utilizan para denotar cualquier parámetro que tenga dirección y que sólo queda especificado por completo cuando se da un ángulo. Sin embargo, un parámetro vectorial tiene una dirección en el espacio, mientras que uno fasorial varía con el tiempo. Un ejemplo de vector es la fuerza mecánica que se representa con una flecha y un ángulo, ya sea con respecto a una dirección horizontal o una vertical. En los fasores, los ángulos representan diferencias en el tiempo. En este caso, se escoge un senoide como referencia. Después de esto, las variaciones en el tiempo de otro senoide pueden compararse con la de referencia por medio del ángulo entre los dos fasores. 1 Fasor. Representación gráfica mediante un segmento de línea con dirección, o fasor (figura 5), que gira en dirección a las manecillas del reloj a una velocidad angular constante w(rad / s). La longitud del fasor es la amplitud de la función, el ángulo entre las dos posiciones del fasor es la diferencia de fase entre los puntos correspondientes a las funciones.

7 Página 7 de 7 BIBLIOGRAFIA GROB. ELECTRONICA BASICA MEXICO, McGraw-Hill 5 ed. Joseph A. Edminister. CIRCUITOS ELECTRICOS. México. 2 ed. McGraw-Hill Raymind A. Serway FISICA PARA CIENCIAS E INGENIERIA México. 5 ed. McGraw-Hill

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA Como ya se dicho, manejaremos, en lo sucesivo, expresiones del tipo: v = V o sen (wt + ϕ) (12.1) i = I o sen (wt + ϕ) (12.2) siendo, v = v(t):valor

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA 2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO

Más detalles

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω

Más detalles

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

Conversión de Corriente alterna a Corriente continua es sencilla y barata.

Conversión de Corriente alterna a Corriente continua es sencilla y barata. TEMA 7 CORRIENTE ALTERNA. En los inicios del desarrollo de los sistemas eléctricos, la electricidad se producía en forma de corriente continua mediante las dinamos, este tipo de generador es más complejo

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno rafael.munoz@upm.es Práctica 3 Corriente

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA Alicia Mª. Esponda Cascajares 4 de may de 008 Alicia Ma. Esponda Cascajares 1 CORRIENTE ALTERNA Se habla de corriente ALTERNA cuando la dirección de la corriente

Más detalles

LA CORRIENTE ALTERNA

LA CORRIENTE ALTERNA LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara ANÁLISIS DE CIRCUITOS SENOIDALES Onda Senoidal (I) La corriente alterna es una corriente eléctrica cuyo valor y sentido varían continuamente, tomando valores positivos y negativos en distintos instantes

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 3

CONCEPTOS CLAVE DE LA UNIDAD 3 CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto

Más detalles

CORRIENTE ALTERNA (RLC EN SERIE)

CORRIENTE ALTERNA (RLC EN SERIE) 3 ORRENTE ATERNA (R EN SERE) OBJETOS Para un circuito de corriente alterna R en serie: Medir la corriente eficaz Medir voltajes eficaces en el condensador y en la bobina Medir la impedancia total Medir

Más detalles

FENÓMENOS PERIÓDICOS RELACIONADOS CON EL TIEMPO

FENÓMENOS PERIÓDICOS RELACIONADOS CON EL TIEMPO FENÓMENOS PERIÓDICOS RELACIONADOS CON EL TIEMPO Sugerencias para quien imparte el curso: Hay que enfatizar el aspecto utilitario de las funciones trigonométricas, haciendo ver que ante la necesidad de

Más detalles

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica 1 Tema 2. Sistemas Trifásicos 2 Sistemas trifásicos. Historia. Ventajas. Índice Conexión en estrella y en triángulo Sistemas trifásicos equilibrados Potencia en sistemas trifásicos equilibrados 3 Sistema

Más detalles

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores SISTEMA TRIFASICO Mg. Amancio R. Rojas Flores GENERACION DE VOLTAJE TRIFASICO (b) Forma de onda de voltaje (a) Generador Básico de CA (c) Fasor Un generador monofásico básico 2 (b) Forma de onda de voltaje

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

Clase 7 Inductancia o Reactancia Inductiva

Clase 7 Inductancia o Reactancia Inductiva Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA PRÁCTICA DE LABORATORIO II-10 CIRCUITOS DE CORRIENTE ALTERNA 1. OBJETIVOS Estudiar el comportamiento de los elementos básicos en los circuitos de corriente alterna y determinar los parámetros del circuito.

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA PRÁCTICA DE LABORATORIO II-10 CIRCUITOS DE CORRIENTE ALTERNA 1. OBJETIVOS Estudiar el comportamiento de los elementos básicos en los circuitos de corriente alterna y determinar los parámetros del circuito.

Más detalles

CONCEPTOS BÁSICOS DE VIBRACIÓN Parte I. José Antonio González Moreno Febrero del 2013

CONCEPTOS BÁSICOS DE VIBRACIÓN Parte I. José Antonio González Moreno Febrero del 2013 CONCEPTOS BÁSICOS DE VIBRACIÓN Parte I José Antonio González Moreno Febrero del 2013 Temario Propuesto: 1. Movimiento Armónico Simple. 2. Física de las Vibraciones. 3. Unidades de medición de la Vibración.

Más detalles

1. CONCEPTOS GENERALES

1. CONCEPTOS GENERALES ITEM DETALLE GUÍA N 1 Conceptos Generales ASIGNATURA Circuitos de Corriente Alterna CÓDIGO 51133254 DOCENTE William López Salgado CÓDIGO 34167 1. CONCEPTOS GENERALES 1.1 OBJETIVO DE LA UNIDAD Que el estudiante

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU)

MOVIMIENTO CIRCULAR UNIFORME (MCU) MOVIMIENTO CIRCULAR UNIFORME (MCU) Ángulo Es la abertura comprendida entre dos radios abiertos que limitan un arco de circunferencia. B _ r θ _ r A Θ= desplazamiento angular r = vector de posición A =

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química FAUTAD DE INGENIEÍA - DEPATAMENTO DE FÍSIA FÍSIA II-06 ESPEIAIDADES: AGIMENSUA-IVI-QUÍMIA-AIMENTOS- BIOINGENIEÍA GUÍA DE POBEMAS POPUESTOS Y ESUETOS OIENTE ATENA Problema Nº Una inductancia de 0,0 H y

Más detalles

TEMA 10 Corriente eléctrica y magnetismo

TEMA 10 Corriente eléctrica y magnetismo ases Físicas y Químicas del Medio Ambiente Corriente eléctrica Alambre metálico TEMA 10 Corriente eléctrica y magnetismo iones positivos En un metal las cargas negativas se mueven libremente alrededor

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A UNIDAD 5: ORRIENTE ALTERNA ATIVIDADES FINALES PÁG. 136 1. Una onda de corriente alterna senoidal tiene por expresión analítica i=6 sen680t. alcular: a) La frecuencia y el periodo. b) El valor que toma

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 2 CAMPO MAGNÉTICO Y F.E.M. INDUCIDA Jesús GÓMEZ

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

UTILIZACIÓN DE GEOGEBRA PARA EL ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA

UTILIZACIÓN DE GEOGEBRA PARA EL ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA UTILIZACIÓN DE GEOGEBRA PARA EL ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA Marcelo J. Marinelli Graciela C. Lombardo Instituto GeoGebra Misiones - Facultad de Ciencias Exactas, Químicas y Naturales, Universidad

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC)

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC) EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC) CONCEPTO SOBRE EL VALOR EFICAZ (RAIZ MEDIA CUADRÁTICA) ROOT MEAN SQUARE (RMS) El valor

Más detalles

Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados

Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados Objetivo Analizar circuitos trifásicos balanceados y desbalanceados mediante el empleo del simulador PSpice. Primero se

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Representación Compleja de una Onda. Onda plana.

Representación Compleja de una Onda. Onda plana. Representación Compleja de una Onda. Onda plana. Onda : Perturbación en un medio que se propaga de un lugar a otro, transportando energía y cantidad de movimiento pero no transporta materia. Ondas mecánicas

Más detalles

Iniciación a la corriente alterna I Fundamento

Iniciación a la corriente alterna I Fundamento Iniciación a la corriente alterna I Fundamento Un generador de corriente continua se caracteriza porque entre sus bornes se establece una diferencia de potencial constante con el tiempo. Un borne está

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos

Más detalles

Introducción a las armónicas

Introducción a las armónicas Se le asigna mucha importancia a las armónicas. Sabemos que el exceso de distorsión armónica puede causar problemas de calidad de suministro debido al calor generado. Estos problemas de calidad de suministro

Más detalles

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).

Más detalles

Las fases de los sinusoides

Las fases de los sinusoides Las fases de los sinusoides La onda sinusoidal es un proceso con variaciones cíclicas. Un ciclo nos muestra las distintas etapas del fenómeno, las cuales se repiten una y otra vez hasta que apretamos stop.

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Aplicando la identidad trigonometrica en la expresión anterior:

Aplicando la identidad trigonometrica en la expresión anterior: UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.

Más detalles

PRUEBA ESPECÍFICA PRUEBA 201

PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada pregunta

Más detalles

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta. 1 a) Fuerza magnética sobre una carga en movimiento. b) En qué dirección se debe mover una carga en un campo magnético para que no se ejerza fuerza sobre ella? 2 Un electrón, un protón y un átomo de helio

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. La figura muestra la superficie de un cubo de arista a = 2 cm, ubicada en un campo uniforme B = 5i + 4j + 3k Tesla. Cual es el valor del flujo del campo magnético a través

Más detalles

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un

Más detalles

Conceptos básicos Sistemas trifásicos balanceados

Conceptos básicos Sistemas trifásicos balanceados Introducción menudo, se estudian redes o circuitos lineales de corriente directa (DC) con fuentes de valor constantes, los cuales tienen una amplia aplicación en el campo de la electrónica, puesto que

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

Definiciones iniciales en corriente alterna

Definiciones iniciales en corriente alterna Definiciones iniciales en corriente alterna Objetivos 1. Calcular y relacionar entre si los distintos parámetros que caracterizan a las funciones sinusoidales, según los criterios conocidos de las matemáticas

Más detalles

Tema 0. Cálculos de potencia

Tema 0. Cálculos de potencia ema Cálculos de potencia emario Potencia y Energía Potencia Instantánea Energía t W = t 1 p t =v t.i t Watios p t dt Julios p =potencia absorbida p =potencia entregada t Potencia media (activa) P media

Más detalles

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos MÓDULO 1 Líneas eléctricas de baja tensión en edificios y equipamientos urbanos EDICIÓN: TAG FORMACIÓN RESERVADOS TODOS LOS DERECHOS. No está permitida la reproducción total o parcial de este texto, ni

Más detalles

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales FACULTAD DE INGENIERIA - U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA : Electrotecnia 2 (Plan 2004) CARRERA : Ingeniería Eléctrica y Electromecánica. PROBLEMA Nº 1: Encuentre la serie trigonométrica

Más detalles

OBJETIVOS... 3 INTRODUCCIÓN... 4

OBJETIVOS... 3 INTRODUCCIÓN... 4 4 TIPOS DE CORRIENTE ELÉCTRICA Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. Sentido de la corriente eléctrica... 5 1.2. Corriente continua... 6 1.2.2. Corriente continua constante...

Más detalles

Manual de Prácticas LABORATORIO DE CIRCUITOS ELÉCTRICOS Práctica # 9 CORRIENTE ALTERNA

Manual de Prácticas LABORATORIO DE CIRCUITOS ELÉCTRICOS Práctica # 9 CORRIENTE ALTERNA OBJETIVOS: 1. Conocer las ondas senoidales de corriente alterna. 2. Comprender el concepto de frecuencia, ciclo y período. 3. Comparar los valores efectivos y máximos de corriente y voltaje de C.A. 4.

Más detalles

SISTEMAS TRIFASICOS.

SISTEMAS TRIFASICOS. SISTEMAS TRIFASICOS. Indice: 1. SISTEMAS TRIFASICOS...2 1.1. Producción de un sistema trifásico de tensiones equilibradas...2 1.2. Secuencia de fases...3 2. CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO...3

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

ITESM Campus Monterrey

ITESM Campus Monterrey TESM Campus Monterrey Programa de Graduados en ngeniería - Maestría en ngeniería Eléctrica Factor de cresta, valor rms, distorsión armónica y factor K Dr. Armando Llamas, Profesor del Departamento de ngeniería

Más detalles

Capítulo 31A: Inducción electromagnética. Paul E. Tippens

Capítulo 31A: Inducción electromagnética. Paul E. Tippens Capítulo 31A: nducción electromagnética Paul E. Tippens 2017 Corriente inducida Cuando un conductor se muee a traés de líneas de flujo, las fuerzas magnéticas sobre los electrones inducen una corriente

Más detalles

Webpage: Departamento de Física Universidad de Sonora

Webpage: Departamento de Física Universidad de Sonora Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario III.- VECTORES. 1. Clasificación de cantidades físicas: Escalares y vectores. 2.

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

Clase 6 Matricula de AIEAS Nª 237/2012 Autor: M.A.R.F Salta 1

Clase 6 Matricula de AIEAS Nª 237/2012 Autor: M.A.R.F Salta 1 Clase 6 1 El capacitor Dispositivo formado por dos placas separadas por un medio aislante. Las placas se denominan armaduras y el medio aislante dieléctrico. Si las armaduras de un condensador se conectar

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS0: FÍSIA GENEA II GUÍA #0: orriente alterna Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Estudiar el funcionamiento de circuitos de

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

TRANSFORMADOR TRIFÁSICO

TRANSFORMADOR TRIFÁSICO TRANSFORMADOR TRIFÁSICO Las tensiones trifásicas pueden transformarse conectando tres transformadores monofásicos en forma adecuada o utilizando transformadores con núcleo de tres columnas. Cuando se conectan

Más detalles

MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN

MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN PARTE I ANÁLISIS DE LINEAS DE TRANSMISIÓN. ANÁLISIS DE LINEAS DE TRANSMISIÓN. A altas frecuencias, la longitud de onda es mucho más pequeña que el tamaño

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 18 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Circuitos Eléctricos en Corriente Alterna (1131071)

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Estadística ESTADÍSTICA

Estadística ESTADÍSTICA ESTADÍSTICA La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014 Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier

Más detalles

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles
Sitemap