MECÁNICA II CURSO 2004/05


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MECÁNICA II CURSO 2004/05"

Transcripción

1 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor del eje AB con una velocidad angular es de 10 rad/s y decrece al ritmo de 20 rad/s 2. Sabiendo que la rotación es antihoraria vista desde B, hallar la velocidad y la aceleración de la esquina C.(15.10 Beer-Johnston) La correa de la figura mueve dos poleas sin deslizar. En el instante indicado las poleas giran en el sentido horario. La velocidad del punto B de la correa es de 4 m/s, aumentando con una aceleración de 32 m/s 2. Determinar en el instante considerado, (a) la velocidad angular y la aceleración angular de cada polea, (b) la aceleración del punto P en la polea C.(15.17 Beer-Johnston) Una caja reductora se compone de tres piñones A, B y C. El piñón A gira en el sentido de las agujas del reloj con una velocidad angular constante ω A =600 rpm, determinar (a) la velocidad angular de los piñones B y C, (b) las aceleraciones de los puntos en contacto entre B y C..(15.23 Beer-Johnston) Dos discos de fricción A y B están apunto de tomar contacto cuando la velocidad angular del disco A es de 240 rpm en sentido antihorario. El disco A comienza a girar desde el reposo para t=0 con una aceleración angular constante α. El disco B parte del reposo en t=2 s y recibe una aceleración angular constante en el sentido horario también de magnitud α. Determinar (a) la aceleración angular α (b) el tiempo para el cual ocurre el contacto. (15.32 Beer-Johnston)

2 1.2.- Movimiento plano general (Velocidades) La varilla AB puede deslizar libremente a lo largo del suelo y el plano inclinado. En el instante indicado, la velocidad angular de la varilla es de 4,2 rad/s en el sentido de las agujas del reloj. Determinar (a) la velocidad angular de la varilla AB, (b) la velocidad al final de la varilla en B. (15.38 Beer-Johnston) En el tren epicicloidal representado, el radio del engranaje central A es a, el radio de cada satélite es b y el radio de la corona E es a+2b. La velocidad angular de A es ω A en sentido horario y la corona está inmóvil. Si la velocidad angular de la araña BCD ha de ser ω A /5 en sentido horario, hallar (a) el valor requerido del cociente b/a, (b) la correspondiente velocidad angular de cada satélite.(15.48 Beer-Johnston) El brazo ABC gira alrededor de C con una velocidad angular antihoraria de 40 rad/s. Dos discos de fricción A y B están sujetos por sus centros al brazo ACB como se muestra. Sabiendo que los discos ruedan sin deslizar en sus superficies de contacto, hallar la velocidad angular (a) del disco A, (b) del disco B. (15.52 Beer-Johnston) En la posición representada, la barra AB posee una velocidad angular horaria de 4 rad/s. Hallar la velocidad de las barras. (15.64 Beer-Johnston) Un automóvil viaja hacia la derecha a la velocidad constante de 80 km/h, Si el diámetro de una rueda es 560 mm, hallar las velocidades de los puntos B, C, D y E de la periferia de la rueda (15.70 Beer-Johnston) El mecanismo está diseñado para convertir de una rotación a otra. La rotación de la barra BC está controlada por la rotación del brazo curvo ranurado OA, el cual conecta mediante el pasador P. Para el instante representado θ=30º y el ángulo β entre la tangente de la curva en el punto P y la horizontal es 40º. Si la velocidad angular de OA es 3 rad/s para esta posición, determinar la velocidad en el punto C (5.86 Meriam-Kraige)

3 1.2.- Movimiento plano general (Centro instantáneo de rotación) Mediante dos puentes grúas se hace descender una viga AE de 5 m. En el instante representado se sabe que la velocidad del punto D es 1 m/s, hacia abajo, y que la del punto E es 1,5 m/s, también hacia abajo. Hallar (a) el centro instantáneo de rotación de la viga, (b) la velocidad del punto A. (15.71 Beer-Johnston) Un cilindro de 60 mm de radio es solidario a un cilindro de 100 mm de radio como se muestra. Uno de ellos rueda sin deslizar sobre la superficie que se representa y el otro tiene una cuerda arrollada en su contorno. Sabiendo que del extremo E de la cuerda se tira hacia la izquierda con una velocidad de 120 mm/s, hallar (a) la velocidad angular de los cilindros, (b) la velocidad de su centro, (c) la longitud de cuerda que se arrolla o desenrolla por segundo. (15.75 Beer-Johnston) En el instante considerado la velocidad angular de la barra DC es de 18 rad/s en sentido horario, determinar (a) la velocidad angular de la barra AB, (b) la velocidad angular de la barra BC, (c) la velocidad en el punto medio de la barra BC. (15.79 Beer-Johnston) En el extremo de la barra AB se encuentran dos ruedas pequeñas que pueden girar libremente a lo largo de las superficies en las que se apoya. Si la velocidad de la rueda B es de 2,5 m/s hacia la derecha en el instante mostrado, determinar (a) la velocidad al final del extremo A de la barra, (b) la velocidad angular de la barra, (c) la velocidad de un punto medio de la barra. (15.85 Beer-Johnston) Dos varillas AB y DE están conectadas como se muestra. Sabiendo que el punto B desciende con una velocidad de 1,2 m/s, hallar (a) la velocidad angular de cada varilla, (b) la velocidad del punto E. (15.94 Beer-Johnston) Resolver el problema utilizando el concepto de centro instantáneo de rotación. ( Beer-Johnston) La rotación de la leva OA está controlada por el movimiento del contacto con el disco circular cuyo centro se mueve a la velocidad v. Determinar la expresión para la velocidad angular ω de la leva AO en términos de x. Determinar también la velocidad angular ω w de la rueda si no desliza en la leva. (5.110 Meriam-Kraige)

4 1.2.- Movimiento plano general (Aceleraciones) En una viga de acero AE de 3 m, la aceleración del punto A es de 1,2 m/s, hacia abajo, y la aceleración angular de la viga es de 1,2 rad/s 2 en sentido antihorario. Sabiendo que en el instante considerado la velocidad angular de la viga es cero, hallar la aceleración (a) del cable B, (b) del cable D ( Beer-Johnston) El volante de 360 mm de radio es solidario de un árbol de 30 mm de radio que puede rodar a lo largo de raíles paralelos. Sabiendo que en el instante representado el centro del árbol tiene una velocidad de 23 mm/s y una aceleración de 10 mm/s 2, ambas hacia la izquierda, hallar la aceleración (a) del punto A, (b) del punto B. ( Beer-Johnston) El brazo AB tiene una velocidad angular antihoraria constante de 16 rad/s. En el instante en que θ=90º, hallar la aceleración (a) del cursor D, (b) el centro G de la varilla BD. ( Beer-Johnston) En el tren epicicloidal de la figura el radio de los engranajes A, B, C y es 60 mm y el radio de la corona E es 180 mm. Sabiendo que el engranaje A tiene una velocidad angular horaria constante de 150 rpm y que la corona E está inmóvil, hallar el módulo de la aceleración del diente del engranaje D en contacto con (a) el engranaje A, (b) el engranaje E. ( Beer-Johnston) En la figura se muestra una bomba de petróleo. La barra flexible D se conecta con el sector E y está siempre vertical por debajo de la posición D. La barra AB hace que la viga BCE oscile debido al movimiento de la manivela OA. Si OA gira con una velocidad angular constante en el sentido de las agujas del reloj de 1 rev cada 3 s, determinar la aceleración del punto D cuando la viga y la manivela OA están en posición horizontal. (5.149 Meriam-Kraige)

5 1.2.- Movimiento plano general (análisis del movimiento plano en función de un parámetro) El cursor D desliza sobre una barra vertical. El disco gira con una velocidad angular constante en sentido horario ω. Encontrar una expresión para la aceleración angular de la barra BD en términos de θ, ω, b y l. ( Beer-Johnston) La manivela AB gira con una velocidad constante en sentido horario ω. Determinar las expresions para la velocidad angular de la barra BD, la velocidad del punto B y la aceleración angular de la barra BD. ( Beer-Johnston) La activación del cilindro hidráulico causa que OB se alargue con una velocidad de 0,260 m/s. Calcular la aceleración normal en el punto A en su recorrido circular alrededor de C para el instante en que θ=60º (5.48 Meriam-Kraige) Uno de los mecanismos más comunes es el de bielamanivela. Expresar la velocidad angular ω AB y la aceleración angular α AB de la barra de conexión AB en términos del ángulo θ para una velocidad de giro constante ω O. (Considerar ω AB y α AB tienen sentido horario). (5.56 Meriam-Kraige)

6 1.3.- Movimiento con un punto fijo La bola de la figura gira sin deslizar en el plano horizontal con una velocidad angular ω = ω x i + ω y j + ω z k. Se sabe que v A = 4.8 i -4.8 j k y v D = 9.6 i k, determinar (a) la velocidad angular de la bola, (b) la velocidad del centro C. ( Beer-Johnston) Las paletas de un ventilador oscilante giran con una velocidad angular constante ω 1 = -450 i (rpm) respecto a la carcasa del motor. Hallar la velocidad angular del conjunto de las paletas, sabiendo que en el instante representado la velocidad y la aceleración angulares de la carcasa son, respectivamente, ω 2 = - 3 j y α 2 =0 ( Beer-Johnston) Un disco de 60 mm de radio gira con una velocidad angular constante ω 2 =4 rad/s en torno a un eje soportado por un bastidor solidario de un árbol horizontal que gira a la velocidad constante ω 1 =5 rad/s. Sabiendo que θ=30º, hallar la aceleración del punto P del canto del disco. ( Beer-Johnston) La varilla AB está conectada mediante rótulas al cursor A y al disco C de 320 mm de diámetro. Sabiendo que éste gira en el sentido antihorario a la velocidad constante ω 0 = 3 rad/s en el plano xy, (a) hallar la velocidad del cursor A en la posición representada. (b) determinar la aceleración del cursor A. ( Beer-Johnston)

7 1.3.- Movimiento con un punto fijo La varilla AB de 500 mm de longitud está conectada mediante rótulas a los cursores A y B, que deslizan por las dos guías que se representan. Sabiendo que el cursor B se mueve hacia el punto E con una celeridad constante de 200 mm/s, hallar la velocidad del cursor A cuando el cursor B pasa por el punto C. ( Beer-Johnston) Dos ejes AC y EG situados en el plano yz, están unidos mediante una junta universal en D. El eje AC gira con una velocidad angular constante ω 1. En el instante en que la pieza de la junta unida al eje AC esté en vertical, determinar la velocidad angular del eje EG ( Beer-Johnston) La barra AB de longitud 275 mm está conectada mediante rótulas al cursor A y por medio de una horquilla al cursor B. Sabiendo que el cursor B se mueve hacia abajo a una velocidad constante de 1.35 m/s, determinar en el instante indicado (a) la velocidad angular de la varilla, (b) la velocidad del cursor A. ( Beer-Johnston) La varilla AB de 580 mm de longitud está unida mediante rótulas a la manivela giratoria BC y al cursor A. La manivela BC tiene una longitud de 160 mm y gira en el plano horizontal xy a la velocidad constante ω 0 = 10 rad/s. en el instante representado, cuando la manivela BC es paralela al eje z, hallar la velocidad de A. ( Beer-Johnston)

8 1.4.- Movimiento general Un motor gira alrededor del eje x con una velocidad constante de & γ = 3π rad/s sin rotación alrededor del eje Z. Determinar la aceleración angular α del disco cuando para por la posición de γ=30º. La velocidad del motor es constante con un valor de 120 rpm. Encontrar también la velocidad y la aceleración del punto A, situado en la parte más alta del disco en esa posición. (7.10 Meriam-Kraige) En el robot de la figura, las pinzas giran con una velocidad angular ω p = 2 rad/s alrededor del eje OG con γ=60º. Todo el dispositivo gira alrededor del eje Z con una velocidad constante Ω = 0,8 rad/s. Determinar la velocidad angular ω y la aceleración angular α del robot. Expresar el resultado en términos de los ejes x-y-z, donde el eje y es paralelo al eje Y. (7.15 Meriam-Kraige) El robot de la figura tiene 5 grados de libertad. Los ejes x-y-z están unidos a la base giratoria que gira alrededor del eje z a la velocidad ω 1. E brazo O 1 O 2 gira alrededor del eje x con una velocidad ω 2 =θ &. El brazo de control O 2 A gira alrededor del eje O 1 -O 2 a razón de ω 3 y también alrededor de un eje perpendicular al punto O 2 que el instante representado es paralelo al eje x con una velocidad ω 4 = & β. Finalmente, el conjunto gira alrededor el eje O 2 A a la velocidad ω 5. Todas las velocidades angulares son constantes. Para la configuración mostrada, (a) Determinar la magnitud de ω, la velocidad angular total. Considerar θ=60º y β= 45º, si ω 1 =2 rad/s, & θ = 1, 5rad/s, ω 3 = ω 4 = ω 5 =0. (b) Expresar también la aceleración angular α del brazo O 1 O 2 como un vector. (7.16 Meriam-Kraige) El disco circular B de radio r, gira sin deslizar efectuando un círculo de radio b sobre el disco fijo C. Escribir una expresión para la velocidad angular ω y la aceleración α del disco B si sus ejes rotan alrededor del eje vertical z a la velocidad angular constante ω 0. (7.18 Meriam-Kraige)

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Trabajo Práctico 4 - Movimiento relativo del punto

Trabajo Práctico 4 - Movimiento relativo del punto Facultad de Ingeniería - U.N.L.P. Mecánica Racional - Curso 2016 / 2 semestre Trabajo Práctico 4 - Movimiento relativo del punto Problema 1. Un excéntrico circular de radio R gira con velocidad angular

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

MOVIMIENTO CIRCULAR UNIFORME.

MOVIMIENTO CIRCULAR UNIFORME. Física y Química 4 ESO MOVIMIENTO CIRCULAR Pág. 1 TEMA 4: MOVIMIENTO CIRCULAR UNIFORME. Un móvil posee un movimiento circular uniforme cuando su trayectoria es una circunferencia y recorre espacios iguales

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica II. Pág. 1 de 7 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica II Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

Profesor: Angel Arrieta Jiménez

Profesor: Angel Arrieta Jiménez TALLER DE CENTROIDES, FUERZAS INTERNAS Y DINÁMICA DE CUERPOS RÍGIDOS 1. Hallar las coordenadas del centroide de la superficie sombreada en cada figura. 2. Hallar, por integración directa, la coordenada

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011 1. Determine el momento de la fuerza F con respecto al punto O: (a) usando la formulación vectorial, (b) la formulación vectorial. 6. Determine el momento de la fuerza con respecto al punto A. Exprese

Más detalles

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) 1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

PROBLEMAS PROPUESTOS DE ROTACIÓN

PROBLEMAS PROPUESTOS DE ROTACIÓN PROBLEMAS PROPUESTOS DE ROTACIÓN 1. Una bicicleta de masa 14 kg lleva ruedas de 1,2 m de diámetro, cada una de masa 3 kg. La masa del ciclista es 38 kg. Estimar la fracción de la energía cinética total

Más detalles

Cinemática del sólido rígido, ejercicios comentados

Cinemática del sólido rígido, ejercicios comentados Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

SOLUCIONARIO DE LOS PROBLEMAS ASIGNADOS DEL LIBRO, DE LA QUINTA EDICIÓN, DE BEER- JOHNSTON

SOLUCIONARIO DE LOS PROBLEMAS ASIGNADOS DEL LIBRO, DE LA QUINTA EDICIÓN, DE BEER- JOHNSTON UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA CIVIL SOLUCIONARIO DE LOS PROBLEMAS ASIGNADOS DEL LIBRO,

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS 1. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

Tecnología Industrial I

Tecnología Industrial I Tecnología Industrial I Máquinas y Mecanismos Ejercicios de repaso 1. A qué distancia del punto de apoyo deberá colocarse Ana para equilibrar el balancín con su hermano Javier? sol. 3m 2. A qué distancia

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez 2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de

Más detalles

C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas

C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas Repaso general Física Mecánica ( I. Caminos Canales y Puertos) 1. El esquema de la figura representa

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo GUÍA 6: CIRCUITOS MAGNÉTICOS Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. La figura muestra la superficie de un cubo de arista a = 2 cm, ubicada en un campo uniforme B = 5i + 4j + 3k Tesla. Cual es el valor del flujo del campo magnético a través

Más detalles

34 35

34 35 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1. Dos fuerzas se aplican a una armella sujeta a una viga. Determine gráficamente la magnitud y la dirección de su resultante usando: a) La ley

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará TALLER Solucione los siguientes ejercicios teniendo en cuenta, antes de resolver cada ejercicio, los pasos a dar y las ecuaciones a utilizar. Cualquier inquietud enviarla a juancjimenez@utp.edu.co o personalmente

Más detalles

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO 5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar

Más detalles

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.)

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Departamento de Tecnología PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Para recuperar la evaluación deberás: -Realizar estas Actividades -Realizar una Prueba de conocimientos (Las actividades deberás entregarlas

Más detalles

Máquinas y mecanismos

Máquinas y mecanismos Máquinas y mecanismos Las máquinas Una máquina es un conjunto de mecanismos que transforman un tipo de energía o de trabajo en energía útil. Estos mecanismos aprovechan la acción de una fuerza para producir

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

EJERCICIOS DE MECANISMOS II PARA 1º ESO. En todos los ejercicios hay que dibujar un esquema del mecanismo

EJERCICIOS DE MECANISMOS II PARA 1º ESO. En todos los ejercicios hay que dibujar un esquema del mecanismo EJERCICIOS DE MECANISMOS II PARA 1º ESO En todos los ejercicios hay que dibujar un esquema del mecanismo 1) Un motor gira a 1000 rpm y su eje tiene 10 mm de diámetro. Se quiere reducir la velocidad del

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

CINEMÁTICA. SOLUCIÓN DE MECÁNICA VECTORIAL (DINÁMICA) Ferdinand L.Singer. Asignatura: DINÁMICA (IC - 244) Docente: Ing. CASTRO PERÉZ,Cristian

CINEMÁTICA. SOLUCIÓN DE MECÁNICA VECTORIAL (DINÁMICA) Ferdinand L.Singer. Asignatura: DINÁMICA (IC - 244) Docente: Ing. CASTRO PERÉZ,Cristian UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA CIVIL CINEMÁTICA PRIMERA PRÁCTICA CALIFICADA SOLUCIÓN

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República SEUNDO PARCIAL - Física 1 1 de Julio de 014 g= 9,8 m/s Momento de Inercia de un disco de masa M y radio R respecto de un eje MR perpendicular que pasa por su centro de masa: I = Momento de Inercia de una

Más detalles

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25.

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.2.- Para la palanca de cambios mostrada, determine

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2012/2013 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

UNASAM FIC PRACTICA DIRIGIDA SOBRE TRABAJO Y ENERGÍA OLVG 2010

UNASAM FIC PRACTICA DIRIGIDA SOBRE TRABAJO Y ENERGÍA OLVG 2010 1. Cuando x = 0, el resorte tiene una longitud natural. Si el cuerpo se desplaza desde su posición inicial x 1 = 200 mm, Determine: (a) el trabajo que realiza el resorte sobre el cuerpo y (b) el trabajo

Más detalles

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.). 1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS UNIVERSIDAD NACIONAL DE SAN LUIS ACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS ÍSICA I Ing. Electromecánica - Ing. Electrónica - Ing. Industrial - Ing. Química - Ing. Alimentos - Ing. Mecatrónica TRABAJO

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Examen de MECANISMOS Junio 94 Nombre...

Examen de MECANISMOS Junio 94 Nombre... Examen de MECANISMOS Junio 94 Nombre... Sean dos ruedas talladas a cero con una cremallera de módulo m=4 mm, ángulo de presión 20 o, addendum igual al módulo y dedendum igual también al módulo. Los números

Más detalles

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS 1 Mecanismos y sistemas mecánicos Mecanismo Conjunto de elementos conectados entre sí por medio de articulaciones móviles cuya misión es: transformar una

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones.

Más detalles

b) Representación en planta del sistema. c) Calcula la velocidad de giro de la rueda conducida. d) Calcula la relación de transmisión.

b) Representación en planta del sistema. c) Calcula la velocidad de giro de la rueda conducida. d) Calcula la relación de transmisión. TRANSMISIÓN SIMPLE. 27. Dados los siguientes datos realiza el dibujo y calcula la velocidad de giro de la rueda 2 sabiendo: d 1 = 30 cm, n 1 = 500 rpm, d 2 = 600 mm 28. Se quiere construir un mecanismo

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta.

Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta. Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta. Brazo Caso z 2 z 3 z 4 z 5 z 6 2 6 Brazo 1 30 25 45 50

Más detalles

BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I. 2. Un motor de 100 CV gira a 3000 rpm. Calcula el par motor. Sol: N.

BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I. 2. Un motor de 100 CV gira a 3000 rpm. Calcula el par motor. Sol: N. BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I 1. El cuentakilómetros de una bicicleta marca 30 km/h. El radio de la rueda es de 30 cm. Calcula: a) Velocidad lineal de la rueda en

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 1. QUE SON LOS MECANISMOS INDICE 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 2.2 MECANISMOS DE TRANSFORMACION DE MOVIMIENTO 2º E.S.O. TECNOLOGÍA - 2º ESO TEMA 5: LOS

Más detalles

3º ESO - Ejercicios de mecanismos HOJA 1

3º ESO - Ejercicios de mecanismos HOJA 1 3º ESO - Ejercicios de mecanismos HOJA 1 1. Para sacar una muela hay que hacer una fuerza de 980 N. La dentista utiliza para ello unas tenazas que tienen un mango de 15 cm. La distancia entre el extremo

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

TEMA 4: El movimiento de las máquinas.

TEMA 4: El movimiento de las máquinas. TEMA 4: El movimiento de las máquinas. NIVEL: 2º Curso de Educación Secundaria Obligatoria. TEMA 4: El movimiento de las máquinas. Página 1 I N D I C E 0.- INTRODUCCIÓN. 1.- TIPOS DE MOVIMIENTO. 1.1.-

Más detalles

( ) 2 = 0,3125 kg m 2.

( ) 2 = 0,3125 kg m 2. Examen de Física-1, 1 Ingeniería Química Examen final Enero de 2014 Problemas (Dos puntos por problema) Problema 1: Un bloque de masa m 1 2 kg y un bloque de masa m 2 6 kg están conectados por una cuerda

Más detalles

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS TEMA 3: MECANISMOS 1. Mecanismos a. Movimiento circular en movimiento circular Ruedas de fricción Polea correa Engranajes b. Movimiento circular en movimiento lineal y viceversa Biela manivela Piñón cremallera

Más detalles

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS DISIPADORES DE ENERGÍA Y RETENCIÓN MECANISMOS ACUMULADORES

Más detalles

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Movimiento rotacional Movimiento circular uniforme. Física 3er curso texto del estudiante.

Más detalles

MOVIMIENTO CIRCULAR 1

MOVIMIENTO CIRCULAR 1 MOVIMIENTO CIRCULAR 1 MOVIMIENTO CIRCULAR Un objeto posee movimiento circular cuando la trayectoria descrita es una circunferencia. En la naturaleza nos encontramos con numerosos ejemplos de movimientos

Más detalles

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO 1. Una persona arrastra una maleta ejerciendo una fuerza de 400 N que forma un ángulo de 30 o con la horizontal. Determina el valor numérico de las componentes

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

1. Calcula el momento de una fuerza de 100 N que está a una distancia de 0,75 m del punto de apoyo. Resultado: M= 75 NAm

1. Calcula el momento de una fuerza de 100 N que está a una distancia de 0,75 m del punto de apoyo. Resultado: M= 75 NAm 1.- PALANCAS 1. Calcula el momento de una fuerza de 100 N que está a una distancia de 0,75 m del punto de apoyo. esultado: M= 75 NAm 2. A qué distancia del punto de apoyo está una fuerza de 35 N si tiene

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento circular Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

Física: Movimiento circular uniforme y velocidad relativa

Física: Movimiento circular uniforme y velocidad relativa Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

MECANISMOS Y MÁQUINAS SIMPLES

MECANISMOS Y MÁQUINAS SIMPLES MECANISMOS Y MÁQUINAS SIMPLES Los mecanismos y máquinas simples son dispositivos que se utilizan para reducir la cantidad de esfuerzo necesario para realizar diversas actividades o para transmitir y /

Más detalles

Mecanismos. Fundamentos para programación y robótica. Módulo 3: Fundamentos de mecánica. Capítulo 3: Mecanismos.

Mecanismos. Fundamentos para programación y robótica. Módulo 3: Fundamentos de mecánica. Capítulo 3: Mecanismos. Módulo 3: Fundamentos de mecánica Capítulo 3:. Objetivos: o Usar mecanismos para resolver problemas. Exposición de máquinas simples y engranajes. Vamos a buscar y analizar mecanismos en cosas cotidianas

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles
Sitemap