CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA"

Transcripción

1 CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA En Bolivia la cartografía topográfica oficial (Escalas 1: , 1: y 1: ) se edita en el sistema de proyección cartográfica UTM (Universal Transversa Mercator) y los mapas (Escalas 1: y 1: ) en el sistema de proyección Lambert, ambos son proyecciones conforme, es decir que mantienen los ángulos y la semejanza de figuras superficiales comprendidas dentro de elementos infinitesimales de la superficie terrestre; esta propiedad hace de la proyección UTM una de las más convenientes para la resolución sobre el plano de los problemas topográficos. Uno de los fines de las transformaciones (conversiones) cartográficas es simplificar los cálculos, afectando a las figuras del elipsoide de las oportunas correcciones para poder sustituirlas por sus transformadas en el plano, y de esta forma poder resolver los problemas por trigonometría plana rectilínea. Dos son los problemas prácticos que normalmente se le presentan al usuario de la cartografía, para trabajos topográficos, que son la determinación de direcciones y distancias. La dirección de la recta determinada por dos puntos A y B de la proyección (fig. 1) se define por el ángulo que esta recta forma con la parte positiva del eje de las Y. Este ángulo se llama orientación y no se debe confundir con el acimut geográfico, que como sabemos, es el ángulo formado por dirección AB con la meridiana geográfica. fig. 1 Calculo de la orientación y distancia entre dos puntos 1

2 Esta orientación puede medirse directamente en el plano, con un transportador, si en el plano está dibujada la cuadricula; pero, si se desea mayor precisión debe calcularse analíticamente. Para ello de la figura 1, tenemos: tg O AB = X B - X A Y B - Y A (for. 5) Esta fórmula es completamente general, y nos determina la dirección de la recta AB, cuyo sentido se deduce de la situación relativa de ambos puntos. La distancia que separa ambos puntos en la proyección se puede calcular por cualquiera de las fórmulas conocidas: D AB = (X B - X A ) 2 + (Y B - Y A ) 2 D AB = D AB = X B - X A sen O AB Y B - Y A cos O AB (for. 6) Tanto en el empleo de estas fórmulas como en las (for. 5), las coordenadas deben ser exactas y no obtenidas gráficamente, ya que en este último caso se perdería la precisión que proporciona el cálculo analítico. CALCULO DE LA DISTANCIA TOPOGRÁFICA Las fórmulas (for.6) nos dan el valor de la distancia entre los puntos A y B en la proyección, pero, en alguna ocasión se nos puede presentar la necesidad de conocer la distancia que realmente existe entre ellos en el elipsoide, que defiere de aquella debido al módulo de anamorfosis lineal K, conocido como factor de escala de la proyección UTM, y además, por la corrección de altitud, conocido como el factor de altitud para trabajos topográficos. El valor de K viene dado por la expresión: K = l l = Proyección terreno 2

3 Por lo tanto la distancia entre los puntos en el terreno será: l l = K (for.7) El valor de K puede obtenerse en las Tablas de la proyección o bien, puede calcularse con suficiente aproximación para cualquier punto de Bolivia, por la expresión: K = ( * q2 ) (for.8) Siendo: q = (Xm 500,000) * 10-6 En la que, Xm, es la abcisa del punto medio de la distancia expresado en metros. Ejemplo: Calcular la distancia existente entre los puntos A y B sobre el elipsoide, sabiendo que las coordenadas de dichos puntos son: A: X = , Y = B: X = , Y = La distancia en la proyección UTM es, según la primera fórmula de las (for.6): X B - X A = Y B - Y A = D = = = m El valor de K lo obtenemos por la expresión (for.8); para ello calculamos los valores de: Xm = = q = ( ) * 10-6 = K = * ( *q 2 ) = * = Y por lo tanto la distancia en el elipsoide será, según (for.7): 3

4 De = = metros La corrección por altitud la podemos obtener del estudio de la figura 2, de la que se deduce: Dt De = R + H R Y de aquí: Dt = De (for.9) R + H R En la que H es la altitud media de los puntos A y B, y R el radio de la Tierra, ambos valores expresados en metros, tomándose para R el valor de metros, radio promedio en Bolivia. Fig. 2 Corrección por altitud Esta corrección es pequeña en general, pero no debe despreciarse ya que para altitudes de 700 metros, alcanza valores de cierta consideración, especialmente dignos de tenerse en cuenta cuando se realizan medidas con aparatos de medición electrónica de distancias, capaces de medir distancias de kilómetros con muy pocos centímetros de error. 4

5 EJEMPLO: Obtener la distancia que separa en el terreno a los puntos A y B del ejemplo anterior; sabiendo que altitud media es de metros. De la fórmula (for.9) se tiene: Dt = = metros CALCULO DE COORDENADAS TOPOGRÁFICAS O LOCALES Las distancias medidas previamente sobre el terreno, sufren un doble proceso de transformación, primero sobre el elipsoide (reducción) y luego sobre el plano (proyección). Esto quiere decir, que las medidas tomadas sobre el plano al hacer el diseño de un proyecto, no le corresponden directamente con las que habrá que plasmar posteriormente en el campo al hacer el replanteo. A la escala de un proyecto de ingeniería de dimensiones moderadas, este problema tiene sencilla solución. Puede establecerse un sistema topográfico local o particular de coordenadas rectangulares planas, basadas en las deducidas de una poligonal conforme. Para ello debe establecerse una línea base con dos puntos A y B conocidas, con coordenadas UTM, identificando a uno de los extremos de la línea base como punto de partida o pivote, que tendrá su equivalente en coordenadas locales, puede ser la mima numeración en X y Y u otras con las que pueda representarse. A partir de este punto conocido A se calculan las distancias y orientaciones de todos los puntos que se desea convertir, inclusive el punto B de línea de referencia u orientación. Los factores de escala K y de elevación se multiplican entre sí para obtener el factor combinado, convirtiéndose en la única variable que cambia de formula, en el cálculo de distancias, que para el caso de conversiones de UTM a topográficas se procede a multiplicar por la distancia de proyección y para el caso de conversión de topográficas a UTM se procede a dividir por la distancia topográfica o de terreno. En las siguientes tablas No. 1 y 2 se aprecian los resultados de las conversiones, 5

6 COORDENADAS TRANSFORMADAS DE UTM A TOPOGRÁFICAS COORDENADAS UTM FACTORES DE CONVERSION COORDENADAS TOPOGRÁFICAS PUNTO ESTE NORTE ELEVACION DIST. PROY ESCALA ALTITUD COMBINADO DIST. TOP ORIENTACION X Y A B ' " P ' " P ' 35.31" Tabla No. 1 COORDENADAS TRANSFORMADAS DE TOPOGRÁFICAS A UTM COORDENADAS TOPOGRÁFICAS FACTORES DE CONVERSION COORDENADAS UTM PUNTO X Y ELEVACION DIST. TOP ESCALA ALTITUD COMBINADO DIST. PROY ORIENTACION ESTE NORTE A B ' " P ' 19.38" P ' " Tabla No. 2

EL SISTEMA DE COORDENADAS UTM

EL SISTEMA DE COORDENADAS UTM EL SISTEMA DE COORDENADAS UTM Apellidos, nombre Departamento Centro Ibáñez Asensio, Sara (sibanez@prv.upv.es) Gisbert Blanquer, Juan Manuel (jgisbert@prv.upv.es) Moreno Ramón, Héctor (hecmora@prv.upv.es)

Más detalles

VI. IDENTIFICACIÓN TOPOGRÁFICA EN LOS MAPAS

VI. IDENTIFICACIÓN TOPOGRÁFICA EN LOS MAPAS (INEGI) VI. IDENTIFICACIÓN TOPOGRÁFICA EN LOS MAPAS 6.1. Definiciones y conceptos Geodesia. Ciencia que se ocupa de las investigaciones, para determinar la forma y las dimensiones de la tierra, así como

Más detalles

SIG. Toma de Datos. Percepción remota. Necesidad de Información. Análisis Interpretación. Mapas e Informes. El ciclo de la información.

SIG. Toma de Datos. Percepción remota. Necesidad de Información. Análisis Interpretación. Mapas e Informes. El ciclo de la información. El ciclo de la información Actualización Toma de Datos Necesidad de Información Percepción remota Acciones Actualización SIG Mundo Real GPS Topografía Encuestas Terrestre Aérea (Fotogrametría) Espacial

Más detalles

Sistemas de proyección. Un mapa representa la superficie terrestre o una parte de la misma sobre un plano.

Sistemas de proyección. Un mapa representa la superficie terrestre o una parte de la misma sobre un plano. Sistemas de proyección Un mapa representa la superficie terrestre o una parte de la misma sobre un plano. Representación Sistema de coordenadas geográficas Esferoide Aproximación a la forma de la tierra

Más detalles

Contextualización Tanto el Sistema GPS como la Estación Total, son instrumentos de medición Geodésica Topográfica respetivamente.

Contextualización Tanto el Sistema GPS como la Estación Total, son instrumentos de medición Geodésica Topográfica respetivamente. Estación Total y GPS M.G. René Vázquez Jiménez. Contextualización Tanto el Sistema GPS como la Estación Total, son instrumentos de medición Geodésica Topográfica respetivamente. GEODESIA es una la ciencia

Más detalles

DIBUJO EN DOS DIMENSIONES DIBUJO EN DOS DIMENSIONES EN INGENIERIA

DIBUJO EN DOS DIMENSIONES DIBUJO EN DOS DIMENSIONES EN INGENIERIA DIBUJO EN DOS DIMENSIONES EN INGENIERIA PLANOS TOPOGRÁFICOS CONCEPTOS BÁSICOS PARA ELABORACIÓN DE PLANOS TOPOGRÁFICOS AZIMUT: Angulo que se mide a partir del meridiano norte en sentido dextrógiro (mismo

Más detalles

APUNTES CARTOGRÁFICOS. Sistemas de coordenadas: Universal Transversal Mercator y Gauss-Krüger

APUNTES CARTOGRÁFICOS. Sistemas de coordenadas: Universal Transversal Mercator y Gauss-Krüger APUNTES CARTOGRÁFICOS Sistemas de coordenadas: Universal Transversal Mercator y Gauss-Krüger CÁTEDRA CARTOGRAFÍA UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO Agosto 2012 CARACTERÍSTICAS DE LAS COORDENADAS

Más detalles

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio:

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio: Trigonometría La trigonometría trata sobre las relaciones entre los ángulos y los lados de los triángulos. El concepto fundamental sobre el que se trabaja es el de ángulo. Dos semirrectas con un origen

Más detalles

Facultad de Ingeniería Civil y Ambiental UTM

Facultad de Ingeniería Civil y Ambiental UTM UTM Introducción. - Existen cientos de proyecciones. - La difusión de uso es relativa. - Una de las proyecciones más extendidas es la UTM. - Se desarrolló por el ejército de los EEUU. - No son coordenadas

Más detalles

UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10)

UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) Utilizar el metro como la unidad principal de medida de longitud. Utilizar el litro y el gramo unidades de principal

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: Cartografía básica CÓDIGO: CARRERA: Ecoturismo NIVEL: Primero No. CRÉDITOS: 4 CRÉDITOS TEORÍA: 2 SEMESTRE/AÑO ACADÉMICO: Primer semestre 2008-09 CRÉDITOS PRÁCTICA:

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

Tema 3. Desarrollos Cilíndricos

Tema 3. Desarrollos Cilíndricos Tema 3. Desarrollos Cilíndricos Alejandra Staller Vázquez a.staller@upm.es 1 TEMA 3.. 3.1. Desarrollos Cilíndricos Directos. a) Con Modelo de Tierra Esférica. 1. D.C.D. Equidistante de Meridianos Automecoicos.

Más detalles

PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES CRITERIOS DE EVALUACIÓN: MÍNIMO EXIGIBLE: EVALUACIÓN:

PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES CRITERIOS DE EVALUACIÓN: MÍNIMO EXIGIBLE: EVALUACIÓN: PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES 1.1. Identifica situaciones en las cuales se emplean los números. 1.2. Interpreta la función que cumplen los números en

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL SÍLABO. 1.1 Carácter: CARTOGRAFÍA Y FOTOGRAMETRÍA

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL SÍLABO. 1.1 Carácter: CARTOGRAFÍA Y FOTOGRAMETRÍA SÍLABO I. DATOS GENERALES 1.1 Carácter: CARTOGRAFÍA Y FOTOGRAMETRÍA 1.2 Carácter: Electivo 1.3 Código: 0802-08E03 1.4 Ciclo Académico: ---- 1.5 Horas de Clase: teoría: 2h, práctica: 2h 1.6 Créditos: 03

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

OCEANOGRAFIA GENERAL Representaciones Cartográficas Proyecciones Distancias - Carta Náutica. Mónica Fiore (2010) y Moira Luz Clara (2011)

OCEANOGRAFIA GENERAL Representaciones Cartográficas Proyecciones Distancias - Carta Náutica. Mónica Fiore (2010) y Moira Luz Clara (2011) OCEANOGRAFIA GENERAL Representaciones Cartográficas Proyecciones Distancias - Carta Náutica Mónica Fiore (2010) y Moira Luz Clara (2011) Se entiende por carta a la representación de una parte o la totalidad

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

SECCIÓN 1. Identificación del conjunto de datos espaciales o producto:

SECCIÓN 1. Identificación del conjunto de datos espaciales o producto: SECCIÓN 1. Identificación del conjunto de datos espaciales o producto: 1.1 Título del conjunto de datos espaciales o producto: Conjunto de datos vectoriales de las localidades amanzanadas rurales del estado

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

Problemas básicos y complementarios de la geodesia

Problemas básicos y complementarios de la geodesia Problemas básicos y complementarios de la geodesia (Resumen de fórmulas y ejemplos numéricos) Rubén C. Rodríguez rubenro@fibertel.com.ar 2012 Los problemas básicos de la geodesia son dos: - directo, dadas

Más detalles

Trigonometría y Análisis Vectorial

Trigonometría y Análisis Vectorial Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

SISTEMA GAUSS-KRÜGER. Matemática I Lic. en Geología Lic. en Paleontología

SISTEMA GAUSS-KRÜGER. Matemática I Lic. en Geología Lic. en Paleontología SISTEMA GAUSS-KRÜGER Autor: Dr. Barbieri Rubén - Cátedra: Matemática I, UNRN. Este sistema de proyección, empleado por el Instituto Geográfico Militar para la confección de todas las cartas topográficas

Más detalles

SECCIÓN 1. Identificación del conjunto de datos espaciales o producto:

SECCIÓN 1. Identificación del conjunto de datos espaciales o producto: SECCIÓN 1. Identificación del conjunto de datos espaciales o producto: 1.1 Título del conjunto de datos espaciales o producto: Mosaico de color natural Landsat 5 2011 1.2 Propósito: Tener una imagen de

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Sistema de Coordenadas

Sistema de Coordenadas Sistemas de Coordenadas Los sistemas de coordenadas son sistemas diseñados para localizar de forma precisa puntos sobre el planeta Tierra. Debido a que los sistemas de coordenadas se utilizan en mapas

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

Índice. 1. Transformación datum Transformación de Molodensky ( 3 parámetros) Transformación de Bursa-Wolf...

Índice. 1. Transformación datum Transformación de Molodensky ( 3 parámetros) Transformación de Bursa-Wolf... ANEXO Índice 1. Transformación datum... 94 1.1. Transformación de Molodensky ( 3 parámetros)... 96 1.2. Transformación de Bursa-Wolf... 97 2. Sistema Mercator... 98 3. Sistema UTM... 99 93 1. Transformación

Más detalles

intersección de dicho meridiano sobre el Ecuador.

intersección de dicho meridiano sobre el Ecuador. Tema 6 Determinación de la Latitud Geográfica 5.1 Definiciones De acuerdo a la [Figura 5.1a] siguiente pueden darse tres diferentes definiciones de Latitud (): a) es el arco de meridiano comprendido entre

Más detalles

Topográfico. Generales del Mapa. Características. de Puerto Rico. de Puerto Rico. de Puerto Rico.

Topográfico. Generales del Mapa. Características. de Puerto Rico. de Puerto Rico. de Puerto Rico. El Mapa El Mapa Un mapa topográfico es un mapa que muestra la topografía de la tierra utilizando curvas de nivel. En el mapa topográfico se enfatiza: la precisión n de las medidas la representación n de

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES

Más detalles

TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA:

TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA: TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA: Conocer el concepto de sistema de proyección cartográfica. Conocer los principales sistemas de proyección en cartografía. Conocer los principios

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

La Cartografía. Elementos del Mapa. Qué es un Mapa? 9/9/2014. El Estudio de la Tierra y su representación

La Cartografía. Elementos del Mapa. Qué es un Mapa? 9/9/2014. El Estudio de la Tierra y su representación La Cartografía El Estudio de la Tierra y su representación Cartografía La cartografía es la creación y el estudio de mapas en todos sus aspectos. Es la forma de manipular, analizar y expresar ideas, formas

Más detalles

Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos.

Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos. Unidad Trigonometría Introducción... Ángulos. Medida de ángulos... Razones trigonométricas de un ángulo... Resolución de triángulos: triángulos rectángulos... Casos concretos... Introducción Se entiende

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

Distancia Mapa. Distancia Real. Escala mediana: 1:250,000 a 1: 1,000,000 Escala pequeña: 1:1,000,,000 o > Más área Menos detalle

Distancia Mapa. Distancia Real. Escala mediana: 1:250,000 a 1: 1,000,000 Escala pequeña: 1:1,000,,000 o > Más área Menos detalle Qué es la Escala? Escalas La escala se define como la razón existente entre la distancia del mapa y la distancia en el terreno. Se refiere al grado de reducción del mapa con relación a la Tierra. Se puede

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador

Más detalles

CONCEPTOS DE CARTOGRAFÍA

CONCEPTOS DE CARTOGRAFÍA CONCEPTOS DE CARTOGRAFÍA Sistema de Coordenadas SISTEMAS DE COORDENADAS La posición, es una ubicación única, geográfica y espacial, es decir, cualquier posición registrada, nunca se va a repetir o a encontrar

Más detalles

Números. 1. Definir e identificar números primos y números compuestos.

Números. 1. Definir e identificar números primos y números compuestos. MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

Los Ángulo y sus Medidas. Everis Aixa Sánchez

Los Ángulo y sus Medidas. Everis Aixa Sánchez Los Ángulo y sus Medidas Everis Aixa Sánchez Estandar: Funciones ES.F.28.1 Reconoce que la medida de un ángulo en radianes es igual a la longitud del arco que subtiende ese ángulo sobre el círculo unitario

Más detalles

1.1 Proyecciones empleadas en Colombia

1.1 Proyecciones empleadas en Colombia 1.1 Proyecciones empleadas en Colombia En el país se ha determinado el empleo de dos sistemas básicos de proyección. 1.1.1 Proyección Conforme de Gauss Los mapas de escala media (1:25000 a 1:100000) se

Más detalles

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos Tema : Razones Trigonométricas. Resolución de Triángulos Rectángulos Matemáticas º Bachillerato CCNN.- Ángulos..- Angulo en el plano..- Criterio de Orientación de ángulos..- Sistemas de medida de ángulos.-

Más detalles

ANGULOS Y DIRECCIONES

ANGULOS Y DIRECCIONES ANGULOS Y DIRECCIONES 1 ANGULOS Y DIRECCIONES Una de las finalidades de la topografia es la localización de puntos sobre la superficie terrestre, lo cual se logra si se conocen: Ladirecciónyladistanciaapartirdeunpunto

Más detalles

USO DEL GPS EN INGENIERÍA

USO DEL GPS EN INGENIERÍA USO DEL GPS EN INGENIERÍA 1 ÍNDICE Qué es el GPS? Sistemas de Proyección Geográfica Uso 1: Sistema de Información Geográfica (GIS) Uso 2: Trazo de Líneas Eléctricas Uso 3: Cálculo de Áreas 2 QUÉ ES EL

Más detalles

Tema 4.2 Proyecciones cartográficas: planas. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén

Tema 4.2 Proyecciones cartográficas: planas. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén Tema 4.2 Proyecciones cartográficas: planas Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén 1. Concepto 2. Propiedades 3. Clasificación 4. Proyecciones planas 5. Otras proyecciones

Más detalles

Tema 2. Conceptos topográficos

Tema 2. Conceptos topográficos Tema 2. Conceptos topográficos Se puede definir la Topografía como el conjunto de métodos e instrumentos necesarios para representar gráfica o numéricamente el terreno con todos sus detalles, naturales

Más detalles

Tema 4.3 Proyecciones cónicas y cilíndricas: La UTM. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén

Tema 4.3 Proyecciones cónicas y cilíndricas: La UTM. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén Tema 4.3 Proyecciones cónicas y cilíndricas: La UTM Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén 1. Proyecciones cónicas 2. Proyecciones cilíndricas 3. Proyección Mercator

Más detalles

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES (tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

CRITERIOS EVALUACIÓN MATEMÁTICAS

CRITERIOS EVALUACIÓN MATEMÁTICAS CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Coordenadas Planas. Facultad de Ingeniería Agrícola. Angel F. Becerra Pajuelo

Coordenadas Planas. Facultad de Ingeniería Agrícola. Angel F. Becerra Pajuelo Coordenadas Planas Facultad de Ingeniería Agrícola DESARROLLO NUMERICO DE UN CASO A continuación se da un ejemplo numérico del calculo de coordenadas que ayudará a comprender mejor todo lo expuesto al

Más detalles

M.D.T. y TOPOCAL. Técnicas de Representación Gráfica. Curso DIGTEG 2010

M.D.T. y TOPOCAL. Técnicas de Representación Gráfica. Curso DIGTEG 2010 M.D.T. y TOPOCAL Técnicas de Representación Gráfica Curso 2010-2011 Superficies Topográficas Superficies Topográficas No es geométrica La superficie terrestre No se puede representar con exactitud matemática

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Curso de capacitación del sistema de información Biótica v 5.0

Curso de capacitación del sistema de información Biótica v 5.0 Curso de capacitación del sistema de información Biótica v 5.0 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad Dirección General de Bioinformática México, 2013 Introducción El Módulo Geográfico

Más detalles

Aplicaciones topográficas Ingeniería Forestal

Aplicaciones topográficas Ingeniería Forestal Aplicaciones topográficas Ingeniería Forestal Latitud y Longitud Sistemas de Coordenadas Geográficas y planas Prof. Roy Cruz Morales. 1 Grados: 1 = 60 min Minutos: 1 min = 60 s Segundos se miden en forman

Más detalles

1. Si 10 m están representados en un mapa por 10 cm, 50 m, por cuántos cm estarán representados?

1. Si 10 m están representados en un mapa por 10 cm, 50 m, por cuántos cm estarán representados? EL MAPA TOPOGRÁFICO OBJETIVO 1. Entender y saber aplicar el concepto de escala referido a las representaciones del medio natural. 2. Comprender el uso de las curvas de nivel. 3. Saber interpretar un mapa

Más detalles

Índice de contenidos

Índice de contenidos TEMA 0.- INTRODUCCIÓN A LA GEOGRAFÍA Índice de contenidos 1- EL CONCEPTO DE GEOGRAFÍA 1.1.- La Geografía 2- LA REPRESENTACIÓN DEL ESPACIO GEOGRÁFICO. 2.1.- Las coordenadas geográficas. 2.2.- Las proyecciones

Más detalles

CARACTERÍSTICAS DE LAS COORDENADAS UTM Y DESCRIPCIÓN DE ESTE TIPO DE COORDENADAS

CARACTERÍSTICAS DE LAS COORDENADAS UTM Y DESCRIPCIÓN DE ESTE TIPO DE COORDENADAS CARACTERÍSTICAS DE LAS COORDENADAS UTM Y DESCRIPCIÓN DE ESTE TIPO DE COORDENADAS Por Antonio R. Franco, escrito el 11/9/99 Revisado el 13/9/2000 CARACTERÍSTICAS DE LAS ZONAS UTM Aquí teneis una representación

Más detalles

Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1

Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 La localización de los lugares en la superficie terrestre y su representación sobre un plano requieren de dos procesos distintos: en

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Modulo I: Aplicación de los SIG en el manejo de cuencas hidrográficas

Modulo I: Aplicación de los SIG en el manejo de cuencas hidrográficas HIDROLOGÍA AVANZADA II Modulo I: Aplicación de los SIG en el manejo de cuencas hidrográficas Clase2: Sistemas de coordenadas y proyecciones cartográficas. Representación de datos. DatosGeorreferenciados

Más detalles

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Prerrequisitos: Nomenclatura del prerrequisito Número de

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS SISTEMAS DE COORDENADAS Como saber Cuales Coordenadas Utilizar? Existen varios sistemas o tipos de coordenadas diferentes las cuales son : Cartesianas Geocèntricas X = - 1,339,405.0 Y = - 5,602,278.2 Z

Más detalles

CÁTEDRA DE GEOLOGÍA GENERAL TRABAJOS PRÁCTICOS PRÁCTICO Nº1 INTRODUCCIÓN A LA TOPOGRAFÍA Y CARTOGRAFÍA GEOLÓGICA

CÁTEDRA DE GEOLOGÍA GENERAL TRABAJOS PRÁCTICOS PRÁCTICO Nº1 INTRODUCCIÓN A LA TOPOGRAFÍA Y CARTOGRAFÍA GEOLÓGICA CÁTEDRA DE GEOLOGÍA GENERAL TRABAJOS PRÁCTICOS PRÁCTICO Nº1 INTRODUCCIÓN A LA TOPOGRAFÍA Y CARTOGRAFÍA GEOLÓGICA Práctico Nº 1. Parte I: La escala Práctico Nº 1. Parte II: Mapas topográficos y curvas de

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

Definiciones de Geografía. mci/2004/35/diccionario/relie ve.html#relieve%20cárstico

Definiciones de Geografía.  mci/2004/35/diccionario/relie ve.html#relieve%20cárstico Definiciones de Geografía http://contenidos.educarex.es/ mci/2004/35/diccionario/relie ve.html#relieve%20cárstico Geografía La palabra Geografía proviene del griego (ge = tierra y graphein = describir)

Más detalles

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son

Más detalles

(19) - EVALUACIÓN DE RIESGOS DE EROSIÓN EN ANDALUCÍA.

(19) - EVALUACIÓN DE RIESGOS DE EROSIÓN EN ANDALUCÍA. (19) - EVALUACIÓN DE RIESGOS DE EROSIÓN EN ANDALUCÍA. La erosión constituye uno de los problemas ambientales más graves que se ciernen sobre Andalucía, ya que a su situación en un clima mediterráneo, en

Más detalles

TEMA El rumbo está comprendido siempre entre: a) 0 y 360 b) 1 y 180. e) 0 y 270. d) Ninguna es correcta.

TEMA El rumbo está comprendido siempre entre: a) 0 y 360 b) 1 y 180. e) 0 y 270. d) Ninguna es correcta. TEMA25 Topografía. Elementos geográficos: Eje terrestre/ polos/ meridiano/ paralelo/ ecuador/ puntos cardinales/ coordenadas geográficas/ acimut y rumbo. Unidades geométricas de medida: Unidades lineales/

Más detalles

IX CONGRESO INTERNACIONAL DE CIENCIAS DE LA TIERRA ( SANTIAGO DE CHILE, 6 10 NOVIEMBRE, 2006 )

IX CONGRESO INTERNACIONAL DE CIENCIAS DE LA TIERRA ( SANTIAGO DE CHILE, 6 10 NOVIEMBRE, 2006 ) IX CONGRESO INTERNACIONAL DE CIENCIAS DE LA TIERRA ( SANTIAGO DE CHILE, 6 1 NOVIEMBRE, 6 ) PONENCIA: REDUCCIÓN Y AJUSTE POR MINIMOS CUADRADOS DE DISTANCIAS APLICANDO EL ANALISIS VECTORIAL AUTOR: FIS MARIO

Más detalles

Tutorial sombras CE3X

Tutorial sombras CE3X Tutorial sombras CE3X 1 Introducción Este documento es un tutorial que explica detalladamente cómo calcular los patrones de sombras (caso general) para ser introducidos en el programa de certificación

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

I.S.P.I. Nº 9009 SAN JUAN BAUTISTA DE LA SALLE PROFESORADO DE MATEMÁTICA. UNIDAD 4 Sistemas de coordenadas II COOORDENAS GEOGRÁFICAS

I.S.P.I. Nº 9009 SAN JUAN BAUTISTA DE LA SALLE PROFESORADO DE MATEMÁTICA. UNIDAD 4 Sistemas de coordenadas II COOORDENAS GEOGRÁFICAS I.S.P.I. Nº 9009 SAN JUAN BAUTISTA DE LA SALLE PROFESORADO DE MATEMÁTICA UNIDAD 4 Sistemas de coordenadas II COOORDENAS GEOGRÁFICAS TÓPICOS DE GEOMETRÍA Prof. Roberto Biraghi / Año 2014 2 Coordenadas geográficas

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

Seno (matemáticas) Coseno Tangente

Seno (matemáticas) Coseno Tangente Seno (matemáticas), una de las proporciones fundamentales de la trigonometría. En un triángulo rectángulo, el valor del seno (que suele abreviarse sen) de un ángulo agudo es igual a la longitud del cateto

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas:

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: MAT 1105 F Integración numérica EJERCICIOS RESUELTOS 1 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: Donde: 4 2 Ecuación lineal Luego, Área del trapecio -1-1

Más detalles
Sitemap